desert
commited on
Commit
·
038ef00
1
Parent(s):
d13f282
init inference
Browse files
app.py
CHANGED
@@ -1,66 +1,54 @@
|
|
1 |
-
import os
|
2 |
-
import subprocess
|
3 |
import gradio as gr
|
|
|
|
|
4 |
from huggingface_hub import hf_hub_download
|
5 |
|
6 |
# Hugging Face repository IDs
|
7 |
base_model_repo = "unsloth/Llama-3.2-3B-Instruct-GGUF"
|
8 |
adapter_repo = "Mat17892/llama_lora_gguf"
|
9 |
|
10 |
-
# Download
|
11 |
print("Downloading base model...")
|
12 |
base_model_path = hf_hub_download(repo_id=base_model_repo, filename="Llama-3.2-3B-Instruct-Q8_0.gguf")
|
13 |
|
14 |
-
# Download the LoRA adapter GGUF file
|
15 |
print("Downloading LoRA adapter...")
|
16 |
lora_adapter_path = hf_hub_download(repo_id=adapter_repo, filename="llama_lora_adapter.gguf")
|
17 |
|
18 |
-
#
|
19 |
-
|
20 |
-
|
21 |
-
|
22 |
|
23 |
-
#
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
-
llama_cli_path, # Path to the llama-cli executable
|
28 |
-
"-c", "2048", # Context length
|
29 |
-
"-cnv", # Enable conversational mode
|
30 |
-
"-m", base_model_path,
|
31 |
-
"--lora", lora_adapter_path,
|
32 |
-
"--prompt", prompt,
|
33 |
-
]
|
34 |
-
try:
|
35 |
-
process = subprocess.Popen(cmd, stdout=subprocess.PIPE, stderr=subprocess.PIPE)
|
36 |
-
stdout, stderr = process.communicate()
|
37 |
|
38 |
-
|
39 |
-
print("Error during inference:")
|
40 |
-
print(stderr.decode())
|
41 |
-
return "Error: Could not generate response."
|
42 |
|
43 |
-
|
44 |
-
|
45 |
-
|
46 |
-
|
47 |
-
|
48 |
-
#
|
49 |
-
def chatbot_fn(user_input, chat_history):
|
50 |
-
# Build the full chat history as the prompt
|
51 |
prompt = ""
|
52 |
for user, ai in chat_history:
|
53 |
prompt += f"User: {user}\nAI: {ai}\n"
|
54 |
prompt += f"User: {user_input}\nAI:" # Add latest user input
|
55 |
|
56 |
-
#
|
57 |
-
|
|
|
|
|
|
|
|
|
58 |
|
59 |
# Update chat history
|
60 |
chat_history.append((user_input, response))
|
61 |
return chat_history, chat_history
|
62 |
|
63 |
-
#
|
64 |
with gr.Blocks() as demo:
|
65 |
gr.Markdown("# 🦙 LLaMA Chatbot with Base Model and LoRA Adapter")
|
66 |
chatbot = gr.Chatbot(label="Chat with the Model")
|
@@ -75,7 +63,7 @@ with gr.Blocks() as demo:
|
|
75 |
|
76 |
# Link components
|
77 |
submit_btn.click(
|
78 |
-
|
79 |
inputs=[user_input, chat_history],
|
80 |
outputs=[chatbot, chat_history],
|
81 |
show_progress=True,
|
|
|
|
|
|
|
1 |
import gradio as gr
|
2 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer
|
3 |
+
from peft import PeftModel, PeftConfig
|
4 |
from huggingface_hub import hf_hub_download
|
5 |
|
6 |
# Hugging Face repository IDs
|
7 |
base_model_repo = "unsloth/Llama-3.2-3B-Instruct-GGUF"
|
8 |
adapter_repo = "Mat17892/llama_lora_gguf"
|
9 |
|
10 |
+
# Download model and adapter
|
11 |
print("Downloading base model...")
|
12 |
base_model_path = hf_hub_download(repo_id=base_model_repo, filename="Llama-3.2-3B-Instruct-Q8_0.gguf")
|
13 |
|
|
|
14 |
print("Downloading LoRA adapter...")
|
15 |
lora_adapter_path = hf_hub_download(repo_id=adapter_repo, filename="llama_lora_adapter.gguf")
|
16 |
|
17 |
+
# Load the tokenizer and base model
|
18 |
+
print("Loading base model and tokenizer...")
|
19 |
+
tokenizer = AutoTokenizer.from_pretrained(base_model_path)
|
20 |
+
base_model = AutoModelForCausalLM.from_pretrained(base_model_path)
|
21 |
|
22 |
+
# Load the LoRA adapter
|
23 |
+
print("Loading LoRA adapter...")
|
24 |
+
config = PeftConfig.from_pretrained(lora_adapter_path)
|
25 |
+
model = PeftModel.from_pretrained(base_model, lora_adapter_path)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
26 |
|
27 |
+
print("Model is ready!")
|
|
|
|
|
|
|
28 |
|
29 |
+
# Function for inference
|
30 |
+
def chat_with_model(user_input, chat_history):
|
31 |
+
"""
|
32 |
+
Generate a response from the model using the chat history and user input.
|
33 |
+
"""
|
34 |
+
# Prepare the prompt
|
|
|
|
|
35 |
prompt = ""
|
36 |
for user, ai in chat_history:
|
37 |
prompt += f"User: {user}\nAI: {ai}\n"
|
38 |
prompt += f"User: {user_input}\nAI:" # Add latest user input
|
39 |
|
40 |
+
# Tokenize input
|
41 |
+
inputs = tokenizer(prompt, return_tensors="pt")
|
42 |
+
|
43 |
+
# Generate response
|
44 |
+
outputs = model.generate(**inputs, max_new_tokens=200, pad_token_id=tokenizer.eos_token_id)
|
45 |
+
response = tokenizer.decode(outputs[0], skip_special_tokens=True)
|
46 |
|
47 |
# Update chat history
|
48 |
chat_history.append((user_input, response))
|
49 |
return chat_history, chat_history
|
50 |
|
51 |
+
# Gradio UI
|
52 |
with gr.Blocks() as demo:
|
53 |
gr.Markdown("# 🦙 LLaMA Chatbot with Base Model and LoRA Adapter")
|
54 |
chatbot = gr.Chatbot(label="Chat with the Model")
|
|
|
63 |
|
64 |
# Link components
|
65 |
submit_btn.click(
|
66 |
+
chat_with_model,
|
67 |
inputs=[user_input, chat_history],
|
68 |
outputs=[chatbot, chat_history],
|
69 |
show_progress=True,
|