MatthiasPi commited on
Commit
ca9b1e7
·
verified ·
1 Parent(s): 910a804

Update tasks/text.py

Browse files
Files changed (1) hide show
  1. tasks/text.py +10 -2
tasks/text.py CHANGED
@@ -7,6 +7,12 @@ import random
7
  from .utils.evaluation import TextEvaluationRequest
8
  from .utils.emissions import tracker, clean_emissions_data, get_space_info
9
 
 
 
 
 
 
 
10
  router = APIRouter()
11
 
12
  DESCRIPTION = "modernBERT"
@@ -57,12 +63,13 @@ async def evaluate_text(request: TextEvaluationRequest):
57
  #--------------------------------------------------------------------------------------------
58
 
59
  # Make random predictions (placeholder for actual model inference)
60
- # true_labels = test_dataset["label"]
61
  # predictions = [random.randint(0, 7) for _ in range(len(true_labels))]
62
  path_model = 'MatthiasPi/CARDS_ModernBert_no_overfitting'
63
  path_tokenizer = "answerdotai/ModernBERT-base"
64
 
65
  model = AutoModelForSequenceClassification.from_pretrained(path_model)
 
66
 
67
  def preprocess_function(df):
68
  return tokenizer(df["quote"], truncation=True)
@@ -77,7 +84,8 @@ async def evaluate_text(request: TextEvaluationRequest):
77
  tokenizer=tokenizer
78
  )
79
 
80
- predictions = trainer.predict(tokenized_test)
 
81
 
82
  #--------------------------------------------------------------------------------------------
83
  # YOUR MODEL INFERENCE STOPS HERE
 
7
  from .utils.evaluation import TextEvaluationRequest
8
  from .utils.emissions import tracker, clean_emissions_data, get_space_info
9
 
10
+ from transformers import AutoTokenizer,BertForSequenceClassification,AutoModelForSequenceClassification,Trainer, TrainingArguments,DataCollatorWithPadding
11
+ from datasets import Dataset
12
+ import torch
13
+ import numpy as np
14
+
15
+
16
  router = APIRouter()
17
 
18
  DESCRIPTION = "modernBERT"
 
63
  #--------------------------------------------------------------------------------------------
64
 
65
  # Make random predictions (placeholder for actual model inference)
66
+ true_labels = test_dataset["label"]
67
  # predictions = [random.randint(0, 7) for _ in range(len(true_labels))]
68
  path_model = 'MatthiasPi/CARDS_ModernBert_no_overfitting'
69
  path_tokenizer = "answerdotai/ModernBERT-base"
70
 
71
  model = AutoModelForSequenceClassification.from_pretrained(path_model)
72
+ tokenizer = AutoTokenizer.from_pretrained("answerdotai/ModernBERT-base")
73
 
74
  def preprocess_function(df):
75
  return tokenizer(df["quote"], truncation=True)
 
84
  tokenizer=tokenizer
85
  )
86
 
87
+ preds = trainer.predict(tokenized_test)
88
+ predictions = np.array([np.argmax(x) for x in preds[0]])
89
 
90
  #--------------------------------------------------------------------------------------------
91
  # YOUR MODEL INFERENCE STOPS HERE