Spaces:
Sleeping
Sleeping
Update tasks/text.py
Browse files- tasks/text.py +10 -2
tasks/text.py
CHANGED
@@ -7,6 +7,12 @@ import random
|
|
7 |
from .utils.evaluation import TextEvaluationRequest
|
8 |
from .utils.emissions import tracker, clean_emissions_data, get_space_info
|
9 |
|
|
|
|
|
|
|
|
|
|
|
|
|
10 |
router = APIRouter()
|
11 |
|
12 |
DESCRIPTION = "modernBERT"
|
@@ -57,12 +63,13 @@ async def evaluate_text(request: TextEvaluationRequest):
|
|
57 |
#--------------------------------------------------------------------------------------------
|
58 |
|
59 |
# Make random predictions (placeholder for actual model inference)
|
60 |
-
|
61 |
# predictions = [random.randint(0, 7) for _ in range(len(true_labels))]
|
62 |
path_model = 'MatthiasPi/CARDS_ModernBert_no_overfitting'
|
63 |
path_tokenizer = "answerdotai/ModernBERT-base"
|
64 |
|
65 |
model = AutoModelForSequenceClassification.from_pretrained(path_model)
|
|
|
66 |
|
67 |
def preprocess_function(df):
|
68 |
return tokenizer(df["quote"], truncation=True)
|
@@ -77,7 +84,8 @@ async def evaluate_text(request: TextEvaluationRequest):
|
|
77 |
tokenizer=tokenizer
|
78 |
)
|
79 |
|
80 |
-
|
|
|
81 |
|
82 |
#--------------------------------------------------------------------------------------------
|
83 |
# YOUR MODEL INFERENCE STOPS HERE
|
|
|
7 |
from .utils.evaluation import TextEvaluationRequest
|
8 |
from .utils.emissions import tracker, clean_emissions_data, get_space_info
|
9 |
|
10 |
+
from transformers import AutoTokenizer,BertForSequenceClassification,AutoModelForSequenceClassification,Trainer, TrainingArguments,DataCollatorWithPadding
|
11 |
+
from datasets import Dataset
|
12 |
+
import torch
|
13 |
+
import numpy as np
|
14 |
+
|
15 |
+
|
16 |
router = APIRouter()
|
17 |
|
18 |
DESCRIPTION = "modernBERT"
|
|
|
63 |
#--------------------------------------------------------------------------------------------
|
64 |
|
65 |
# Make random predictions (placeholder for actual model inference)
|
66 |
+
true_labels = test_dataset["label"]
|
67 |
# predictions = [random.randint(0, 7) for _ in range(len(true_labels))]
|
68 |
path_model = 'MatthiasPi/CARDS_ModernBert_no_overfitting'
|
69 |
path_tokenizer = "answerdotai/ModernBERT-base"
|
70 |
|
71 |
model = AutoModelForSequenceClassification.from_pretrained(path_model)
|
72 |
+
tokenizer = AutoTokenizer.from_pretrained("answerdotai/ModernBERT-base")
|
73 |
|
74 |
def preprocess_function(df):
|
75 |
return tokenizer(df["quote"], truncation=True)
|
|
|
84 |
tokenizer=tokenizer
|
85 |
)
|
86 |
|
87 |
+
preds = trainer.predict(tokenized_test)
|
88 |
+
predictions = np.array([np.argmax(x) for x in preds[0]])
|
89 |
|
90 |
#--------------------------------------------------------------------------------------------
|
91 |
# YOUR MODEL INFERENCE STOPS HERE
|