Spaces:
Sleeping
Sleeping
File size: 6,879 Bytes
1219288 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 |
import streamlit as st
import numpy as np
import cv2
import plotly.graph_objects as go
from plotly.subplots import make_subplots
import pandas as pd
# FFT processing functions
def apply_fft(image):
"""Apply FFT to each channel of the image and return shifted FFT channels."""
fft_channels = []
for channel in cv2.split(image):
fft = np.fft.fft2(channel)
fft_shifted = np.fft.fftshift(fft)
fft_channels.append(fft_shifted)
return fft_channels
def filter_fft_percentage(fft_channels, percentage):
"""Filter FFT channels to keep top percentage of magnitudes."""
filtered_fft = []
for fft_data in fft_channels:
magnitude = np.abs(fft_data)
sorted_mag = np.sort(magnitude.flatten())[::-1]
num_keep = int(len(sorted_mag) * percentage / 100)
threshold = sorted_mag[num_keep - 1] if num_keep > 0 else 0
mask = magnitude >= threshold
filtered_fft.append(fft_data * mask)
return filtered_fft
def inverse_fft(filtered_fft):
"""Reconstruct image from filtered FFT channels."""
reconstructed_channels = []
for fft_data in filtered_fft:
fft_ishift = np.fft.ifftshift(fft_data)
img_reconstructed = np.fft.ifft2(fft_ishift).real
img_normalized = cv2.normalize(img_reconstructed, None, 0, 255, cv2.NORM_MINMAX)
reconstructed_channels.append(img_normalized.astype(np.uint8))
return cv2.merge(reconstructed_channels)
def create_3d_plot(fft_channels, downsample_factor=1):
"""Create interactive 3D surface plots using Plotly."""
fig = make_subplots(
rows=3, cols=2,
specs=[[{'type': 'scene'}, {'type': 'scene'}],
[{'type': 'scene'}, {'type': 'scene'}],
[{'type': 'scene'}, {'type': 'scene'}]],
subplot_titles=(
'Blue - Magnitude', 'Blue - Phase',
'Green - Magnitude', 'Green - Phase',
'Red - Magnitude', 'Red - Phase'
)
)
channel_names = ['Blue', 'Green', 'Red']
for i, fft_data in enumerate(fft_channels):
# Downsample data for better performance
fft_down = fft_data[::downsample_factor, ::downsample_factor]
magnitude = np.abs(fft_down)
phase = np.angle(fft_down)
# Create grid coordinates
rows, cols = magnitude.shape
x = np.linspace(-cols//2, cols//2, cols)
y = np.linspace(-rows//2, rows//2, rows)
X, Y = np.meshgrid(x, y)
# Magnitude plot
fig.add_trace(
go.Surface(x=X, y=Y, z=magnitude, colorscale='Viridis', showscale=False),
row=i+1, col=1
)
# Phase plot
fig.add_trace(
go.Surface(x=X, y=Y, z=phase, colorscale='Inferno', showscale=False),
row=i+1, col=2
)
# Update layout for better visualization
fig.update_layout(
height=1500,
width=1200,
margin=dict(l=0, r=0, b=0, t=30),
scene_camera=dict(eye=dict(x=1.5, y=1.5, z=0.5)),
scene=dict(
xaxis=dict(title='Frequency X'),
yaxis=dict(title='Frequency Y'),
zaxis=dict(title='Magnitude/Phase')
)
)
return fig
# Streamlit UI
st.set_page_config(layout="wide")
st.title("Interactive Frequency Domain Analysis")
# Introduction Text
st.subheader("Introduction to FFT and Image Filtering")
st.write(
"""Fast Fourier Transform (FFT) is a technique to transform an image from the spatial domain to the frequency domain.
In this domain, each frequency represents a different aspect of the image's texture and details.
By filtering out certain frequencies, you can modify the image's appearance, enhancing or suppressing certain features."""
)
uploaded_file = st.file_uploader("Upload an image", type=['png', 'jpg', 'jpeg'])
if uploaded_file is not None:
# Read and display original image
file_bytes = np.frombuffer(uploaded_file.getvalue(), np.uint8)
image = cv2.imdecode(file_bytes, cv2.IMREAD_COLOR)
image_rgb = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
st.image(image_rgb, caption="Original Image", use_column_width=True)
# Process FFT and store in session state
if 'fft_channels' not in st.session_state:
st.session_state.fft_channels = apply_fft(image)
# Create a form to submit frequency percentage selection
with st.form(key='fft_form'):
percentage = st.slider(
"Percentage of frequencies to retain:",
min_value=0.1, max_value=100.0, value=10.0, step=0.1,
help="Adjust the slider to select what portion of frequency components to keep. Lower values blur the image."
)
submit_button = st.form_submit_button(label="Apply Filter")
if submit_button:
# Apply filtering and reconstruct image
filtered_fft = filter_fft_percentage(st.session_state.fft_channels, percentage)
reconstructed = inverse_fft(filtered_fft)
reconstructed_rgb = cv2.cvtColor(reconstructed, cv2.COLOR_BGR2RGB)
st.image(reconstructed_rgb, caption="Reconstructed Image", use_column_width=True)
# Display FFT Data in Table Format
st.subheader("Frequency Data of Each Channel")
fft_data_dict = {}
for i, channel_name in enumerate(['Blue', 'Green', 'Red']):
magnitude = np.abs(st.session_state.fft_channels[i])
phase = np.angle(st.session_state.fft_channels[i])
fft_data_dict[channel_name] = {'Magnitude': magnitude, 'Phase': phase}
# Create DataFrames for each channel's FFT data
for channel_name, data in fft_data_dict.items():
st.write(f"### {channel_name} Channel FFT Data")
magnitude_df = pd.DataFrame(data['Magnitude'])
phase_df = pd.DataFrame(data['Phase'])
st.write("#### Magnitude Data:")
st.dataframe(magnitude_df.head(10)) # Display first 10 rows for brevity
st.write("#### Phase Data:")
st.dataframe(phase_df.head(10)) # Display first 10 rows for brevity
# Download button for reconstructed image
_, encoded_img = cv2.imencode('.png', reconstructed)
st.download_button(
"Download Reconstructed Image",
encoded_img.tobytes(),
"reconstructed.png",
"image/png"
)
# 3D visualization controls
st.subheader("3D Frequency Components Visualization")
downsample = st.slider(
"Downsampling factor for 3D plots:",
min_value=1, max_value=20, value=5,
help="Controls the resolution of the 3D surface plots. Higher values improve performance but reduce the plot's detail."
)
# Generate and display 3D plots
fig = create_3d_plot(filtered_fft, downsample)
st.plotly_chart(fig, use_container_width=True)
|