Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -9,6 +9,7 @@ import torch.nn as nn
|
|
9 |
import torch.nn.functional as F
|
10 |
import matplotlib.pyplot as plt
|
11 |
import plotly.express as px
|
|
|
12 |
|
13 |
# Dummy CNN Model
|
14 |
class SimpleCNN(nn.Module):
|
@@ -219,95 +220,178 @@ if uploaded_file is not None:
|
|
219 |
st.subheader("CNN Processing Visualization")
|
220 |
activations, magnitude_tensor = pass_to_cnn(st.session_state.filtered_fft[0])
|
221 |
|
222 |
-
# Display input tensor
|
223 |
-
st.write("### Input Magnitude Tensor
|
224 |
-
|
225 |
-
|
226 |
-
|
227 |
-
|
|
|
228 |
|
229 |
-
# Display
|
230 |
st.write("### First Convolution Layer Activations")
|
231 |
activation = activations.detach().numpy()
|
232 |
|
233 |
if len(activation.shape) == 4:
|
234 |
-
# Create
|
235 |
-
|
236 |
-
|
|
|
237 |
fig, axs = plt.subplots(rows, cols, figsize=(20, 20))
|
238 |
|
239 |
for i in range(activation.shape[1]):
|
240 |
-
act_img = activation[0, i, :, :]
|
241 |
ax = axs[i//cols, i%cols]
|
242 |
-
|
|
|
|
|
243 |
ax.set_title(f'Channel {i+1}')
|
244 |
-
|
245 |
|
|
|
246 |
st.pyplot(fig)
|
247 |
|
248 |
-
# Display
|
249 |
-
st.write("
|
250 |
-
|
251 |
-
|
252 |
-
|
253 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
254 |
st.markdown("---")
|
255 |
-
st.subheader("
|
256 |
-
|
257 |
-
# Step 2: Second Convolution Layer Visualization
|
258 |
-
st.write("### Second Convolution Layer Features")
|
259 |
with torch.no_grad():
|
260 |
model = SimpleCNN()
|
261 |
-
|
262 |
-
second_conv = model.conv2(
|
263 |
|
264 |
if len(second_conv.shape) == 4:
|
265 |
-
|
|
|
|
|
266 |
rows = 4
|
267 |
fig2, axs2 = plt.subplots(rows, cols, figsize=(20, 10))
|
268 |
|
269 |
-
for i in range(
|
270 |
-
act_img = second_conv[0, i, :, :]
|
271 |
ax = axs2[i//cols, i%cols]
|
272 |
-
|
273 |
-
|
|
|
|
|
274 |
ax.axis('off')
|
275 |
|
|
|
276 |
st.pyplot(fig2)
|
277 |
-
|
278 |
-
#
|
279 |
-
st.
|
|
|
280 |
with torch.no_grad():
|
281 |
pooled = F.adaptive_avg_pool2d(torch.tensor(second_conv), (8, 8)).numpy()
|
282 |
|
283 |
-
st.write("Pooled Features
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
284 |
|
285 |
-
#
|
286 |
-
|
287 |
-
|
288 |
-
|
289 |
-
|
290 |
-
|
291 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
292 |
|
293 |
-
|
294 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
295 |
with torch.no_grad():
|
296 |
model = SimpleCNN()
|
297 |
output, _ = model(magnitude_tensor)
|
298 |
-
|
299 |
-
|
300 |
classes = [f"Class {i}" for i in range(10)]
|
301 |
-
|
302 |
-
st.plotly_chart(fig3)
|
303 |
|
304 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
305 |
st.markdown("""
|
306 |
-
|
307 |
-
|
308 |
-
|
309 |
-
|
310 |
-
|
311 |
-
|
312 |
-
|
313 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
9 |
import torch.nn.functional as F
|
10 |
import matplotlib.pyplot as plt
|
11 |
import plotly.express as px
|
12 |
+
import seaborn as sns
|
13 |
|
14 |
# Dummy CNN Model
|
15 |
class SimpleCNN(nn.Module):
|
|
|
220 |
st.subheader("CNN Processing Visualization")
|
221 |
activations, magnitude_tensor = pass_to_cnn(st.session_state.filtered_fft[0])
|
222 |
|
223 |
+
# Display input tensor with improved visualization
|
224 |
+
st.write("### Input Magnitude Tensor")
|
225 |
+
fig_input, ax_input = plt.subplots(figsize=(8, 8))
|
226 |
+
input_img = magnitude_tensor.squeeze().numpy()
|
227 |
+
im = ax_input.imshow(input_img, cmap='viridis')
|
228 |
+
plt.colorbar(im, ax=ax_input)
|
229 |
+
st.pyplot(fig_input)
|
230 |
|
231 |
+
# Display activation maps with proper normalization
|
232 |
st.write("### First Convolution Layer Activations")
|
233 |
activation = activations.detach().numpy()
|
234 |
|
235 |
if len(activation.shape) == 4:
|
236 |
+
# Create grid layout for activation maps
|
237 |
+
st.write("#### Activation Maps Visualization")
|
238 |
+
cols = 4
|
239 |
+
rows = 4
|
240 |
fig, axs = plt.subplots(rows, cols, figsize=(20, 20))
|
241 |
|
242 |
for i in range(activation.shape[1]):
|
|
|
243 |
ax = axs[i//cols, i%cols]
|
244 |
+
act_img = activation[0, i, :, :]
|
245 |
+
vmin, vmax = np.percentile(act_img, [1, 99]) # Robust normalization
|
246 |
+
im = ax.imshow(act_img, cmap='inferno', vmin=vmin, vmax=vmax)
|
247 |
ax.set_title(f'Channel {i+1}')
|
248 |
+
fig.colorbar(im, ax=ax)
|
249 |
|
250 |
+
plt.tight_layout()
|
251 |
st.pyplot(fig)
|
252 |
|
253 |
+
# Display activation statistics
|
254 |
+
st.write("#### Activation Value Distribution")
|
255 |
+
flat_activations = activation.flatten()
|
256 |
+
fig_hist = px.histogram(
|
257 |
+
x=flat_activations,
|
258 |
+
nbins=100,
|
259 |
+
title="Activation Value Distribution",
|
260 |
+
labels={'x': 'Activation Value'}
|
261 |
+
)
|
262 |
+
st.plotly_chart(fig_hist)
|
263 |
+
|
264 |
+
# Second Convolution Layer Visualization
|
265 |
st.markdown("---")
|
266 |
+
st.subheader("Second Convolution Layer Features")
|
|
|
|
|
|
|
267 |
with torch.no_grad():
|
268 |
model = SimpleCNN()
|
269 |
+
_, first_conv = model(magnitude_tensor)
|
270 |
+
second_conv = model.conv2(first_conv).detach().numpy()
|
271 |
|
272 |
if len(second_conv.shape) == 4:
|
273 |
+
# Display sample feature maps
|
274 |
+
st.write("#### Feature Maps Visualization")
|
275 |
+
cols = 8
|
276 |
rows = 4
|
277 |
fig2, axs2 = plt.subplots(rows, cols, figsize=(20, 10))
|
278 |
|
279 |
+
for i in range(32): # For all 32 channels
|
|
|
280 |
ax = axs2[i//cols, i%cols]
|
281 |
+
feature_map = second_conv[0, i, :, :]
|
282 |
+
vmin, vmax = np.percentile(feature_map, [1, 99])
|
283 |
+
im = ax.imshow(feature_map, cmap='plasma', vmin=vmin, vmax=vmax)
|
284 |
+
ax.set_title(f'FM {i+1}')
|
285 |
ax.axis('off')
|
286 |
|
287 |
+
plt.tight_layout()
|
288 |
st.pyplot(fig2)
|
289 |
+
|
290 |
+
# Pooling Layer Visualization
|
291 |
+
st.markdown("---")
|
292 |
+
st.subheader("Pooling Layer Output")
|
293 |
with torch.no_grad():
|
294 |
pooled = F.adaptive_avg_pool2d(torch.tensor(second_conv), (8, 8)).numpy()
|
295 |
|
296 |
+
st.write("#### Pooled Features Dimensionality Reduction")
|
297 |
+
|
298 |
+
# Create a heatmap using seaborn
|
299 |
+
fig_pool, ax_pool = plt.subplots(figsize=(10, 6))
|
300 |
+
sns.heatmap(
|
301 |
+
pooled[0, 0], # Use the first channel of the pooled features
|
302 |
+
annot=True, # Show values in each cell
|
303 |
+
fmt=".2f", # Format values to 2 decimal places
|
304 |
+
cmap="coolwarm",# Use a color map for better visualization
|
305 |
+
ax=ax_pool # Plot on the created axis
|
306 |
+
)
|
307 |
+
st.pyplot(fig_pool)
|
308 |
|
309 |
+
# Create a grid of pooled feature maps
|
310 |
+
cols = 4
|
311 |
+
rows = 2
|
312 |
+
fig, axs = plt.subplots(rows, cols, figsize=(20, 10))
|
313 |
+
|
314 |
+
for i in range(rows * cols):
|
315 |
+
ax = axs[i // cols, i % cols]
|
316 |
+
sns.heatmap(
|
317 |
+
pooled[0, i],
|
318 |
+
annot=True,
|
319 |
+
fmt=".2f",
|
320 |
+
cmap="coolwarm",
|
321 |
+
ax=ax
|
322 |
+
)
|
323 |
+
ax.set_title(f"Channel {i+1}")
|
324 |
+
|
325 |
+
plt.tight_layout()
|
326 |
+
st.pyplot(fig)
|
327 |
+
|
328 |
+
# Fully Connected Layer Visualization
|
329 |
+
st.markdown("---")
|
330 |
+
st.subheader("Fully Connected Layer Analysis")
|
331 |
+
with torch.no_grad():
|
332 |
+
model = SimpleCNN()
|
333 |
+
flattened = model.conv2(model.conv1(magnitude_tensor))
|
334 |
+
flattened = F.adaptive_avg_pool2d(flattened, (8, 8))
|
335 |
+
flattened = flattened.view(flattened.size(0), -1)
|
336 |
+
fc_output = model.fc1(flattened).detach().numpy()
|
337 |
|
338 |
+
st.write("#### FC Layer Activation Patterns")
|
339 |
+
fig_fc = px.imshow(
|
340 |
+
fc_output.T,
|
341 |
+
labels=dict(x="Neurons", y="Features", color="Activation"),
|
342 |
+
color_continuous_scale="viridis"
|
343 |
+
)
|
344 |
+
st.plotly_chart(fig_fc)
|
345 |
+
|
346 |
+
# Final Classification Visualization
|
347 |
+
st.markdown("---")
|
348 |
+
st.subheader("Final Classification Results")
|
349 |
with torch.no_grad():
|
350 |
model = SimpleCNN()
|
351 |
output, _ = model(magnitude_tensor)
|
352 |
+
probabilities = F.softmax(output, dim=1).numpy()[0]
|
353 |
+
|
354 |
classes = [f"Class {i}" for i in range(10)]
|
355 |
+
df = pd.DataFrame({"Class": classes, "Probability": probabilities})
|
|
|
356 |
|
357 |
+
fig_class = px.bar(
|
358 |
+
df,
|
359 |
+
x="Class",
|
360 |
+
y="Probability",
|
361 |
+
color="Probability",
|
362 |
+
color_continuous_scale="tealrose"
|
363 |
+
)
|
364 |
+
st.plotly_chart(fig_class)
|
365 |
+
|
366 |
+
# Full Pipeline Explanation
|
367 |
st.markdown("""
|
368 |
+
### Complete Processing Pipeline
|
369 |
+
<div style="
|
370 |
+
background-color: #f0f2f6;
|
371 |
+
padding: 30px;
|
372 |
+
border-radius: 15px;
|
373 |
+
box-shadow: 0px 4px 6px rgba(0, 0, 0, 0.1);
|
374 |
+
font-family: 'Arial', sans-serif;
|
375 |
+
font-size: 16px;
|
376 |
+
color: #333;
|
377 |
+
border: 1px solid #dcdcdc;
|
378 |
+
">
|
379 |
+
<ul style="list-style-type: none; padding-left: 0;">
|
380 |
+
<li><strong>1. Input Preparation:</strong> Magnitude spectrum from FFT</li>
|
381 |
+
<li><strong>2. Feature Extraction:</strong>
|
382 |
+
<ul>
|
383 |
+
<li>- Conv1: 16 filters (3x3)</li>
|
384 |
+
<li>- Conv2: 32 filters (3x3)</li>
|
385 |
+
</ul>
|
386 |
+
</li>
|
387 |
+
<li><strong>3. Dimensionality Reduction:</strong> Adaptive average pooling (8x8)</li>
|
388 |
+
<li><strong>4. Feature Transformation:</strong>
|
389 |
+
<ul>
|
390 |
+
<li>- Flattening: 32×8×8 → 2048 features</li>
|
391 |
+
<li>- FC1: 2048 → 128 dimensions</li>
|
392 |
+
</ul>
|
393 |
+
</li>
|
394 |
+
<li><strong>5. Classification:</strong> FC2: 128 → 10 classes</li>
|
395 |
+
</ul>
|
396 |
+
</div>
|
397 |
+
""", unsafe_allow_html=True)
|