Spaces:
Runtime error
Runtime error
#! /bin/bash | |
# -*- coding: utf-8 -*- | |
"""Gradio.ipynb | |
Automatically generated by Colab. | |
Original file is located at | |
https://colab.research.google.com/drive/1NhPAjcqhdmjOyMrg7j8IHqzGlJARGIjs | |
""" | |
import gradio as gr | |
import torch | |
from transformers import AutoModelForCausalLM, AutoTokenizer, StoppingCriteria, StoppingCriteriaList, TextIteratorStreamer | |
from threading import Thread | |
new_model="Mervyn999/mistral-7b-distilabel-mini-DPO" | |
model = AutoModelForCausalLM.from_pretrained(new_model, | |
low_cpu_mem_usage=True, | |
torch_dtype=torch.float16, | |
load_in_4bit=True, | |
device_map="cuda") | |
tokenizer = AutoTokenizer.from_pretrained(new_model) | |
# model = model.to('cuda:0') | |
class StopOnTokens(StoppingCriteria): | |
def __call__(self, input_ids: torch.LongTensor, scores: torch.FloatTensor, **kwargs) -> bool: | |
stop_ids = [29, 0] | |
for stop_id in stop_ids: | |
if input_ids[0][-1] == stop_id: | |
return True | |
return False | |
def predict(message, history): | |
history_transformer_format = history + [[message, ""]] | |
stop = StopOnTokens() | |
#Wrap the prompt using the right chat template | |
messages = "".join([f"### Instruction:\n{item[0]}\n\n### Response:\n{item[1]}" #curr_system_message + | |
for item in history_transformer_format]) | |
model_inputs = tokenizer([messages], return_tensors="pt").to("cuda") | |
streamer = TextIteratorStreamer(tokenizer, timeout=10., skip_prompt=True, skip_special_tokens=True) | |
generate_kwargs = dict( | |
model_inputs, | |
streamer=streamer, | |
max_new_tokens=1024, | |
do_sample=True, | |
top_p=0.95, | |
top_k=1000, | |
temperature=1.0, | |
num_beams=1, | |
stopping_criteria=StoppingCriteriaList([stop]) | |
) | |
t = Thread(target=model.generate, kwargs=generate_kwargs) | |
t.start() | |
partial_message = "" | |
for new_token in streamer: | |
if new_token != '<': | |
partial_message += new_token | |
yield partial_message | |
title = "Jaewon's finetuned LLM" | |
gr.close_all() | |
# gr.ChatInterface(predict).queue().launch(debug=True) | |
gr.ChatInterface( | |
predict, | |
chatbot=gr.Chatbot(height=300), | |
textbox=gr.Textbox(placeholder="Send a message", container=False, scale=7), | |
title="Chat with Mistral-7B DPO tuned", | |
theme="soft", | |
retry_btn=None, | |
undo_btn="Delete Previous", | |
clear_btn="Clear", | |
).queue().launch() | |