Spaces:
Runtime error
Runtime error
File size: 21,348 Bytes
d97b57a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 |
{
"cells": [
{
"cell_type": "code",
"execution_count": 3,
"metadata": {},
"outputs": [],
"source": [
"from gpt3_function import *"
]
},
{
"cell_type": "code",
"execution_count": 4,
"metadata": {},
"outputs": [],
"source": [
"import random\n",
"import numpy as np\n",
"\n",
"def generate_weighted_list(weighted_list, length, verbose=False):\n",
" if verbose : print(weighted_list)\n",
" items = [*weighted_list.keys()]\n",
" weights = [*weighted_list.values()]\n",
" weights = np.array(weights)\n",
" output = list(np.random.choice(items, length, p=weights/sum(weights)))\n",
" return output\n",
"\n",
"#simple\n",
"def kapuhala_list(weighted_list, length):\n",
"\n",
" def generate_weighted_list(weighted_list, length, verbose=False):\n",
" if verbose : print(weighted_list)\n",
" items = [*weighted_list.keys()]\n",
" weights = [*weighted_list.values()]\n",
" weights = np.array(weights)\n",
" output = list(np.random.choice(items, length, p=weights/sum(weights)))\n",
" return output\n",
"\n",
" list1 = list()\n",
" for index in range(0, length):\n",
" weighted_list_ = weighted_list.copy()\n",
" if index == 1:\n",
" #look 1 position back \n",
" del weighted_list_[list1[index-1][0]]\n",
" list1.append(generate_weighted_list(weighted_list_, 1))\n",
" elif index >= 2:\n",
" #look 2 positions back\n",
" del weighted_list_[list1[index-2][0]]\n",
" del weighted_list_[list1[index-1][0]]\n",
" list1.append(generate_weighted_list(weighted_list_, 1))\n",
" else:\n",
" #we cannot look back otherwise throws error\n",
" list1.append(generate_weighted_list(weighted_list_, 1))\n",
"\n",
" list1 = [x[0] for x in list1] \n",
" return list1\n",
"\n",
"#includes weekdays\n",
"def kapuhala_list(weighted_list, weekday_list, length):\n",
"\n",
" def generate_weighted_list(weighted_list, length, verbose=False):\n",
" if verbose : print(weighted_list)\n",
" items = [*weighted_list.keys()]\n",
" weights = [*weighted_list.values()]\n",
" weights = np.array(weights)\n",
" output = list(np.random.choice(items, length, p=weights/sum(weights)))\n",
" return output\n",
"\n",
" list1 = list()\n",
" for index in range(0, length):\n",
" weighted_list_ = weighted_list.copy()\n",
" #weekday sequence\n",
" current = weekday_list[index] \n",
" if (current == 'Saturday') or (current == 'Sunday'):\n",
" del weighted_list_['weekend']\n",
" #avoid repetitions\n",
" if index == 1:\n",
" #look 1 position back \n",
" try:\n",
" del weighted_list_[list1[index-1][0]]\n",
" except:\n",
" pass\n",
" list1.append(generate_weighted_list(weighted_list_, 1))\n",
" elif index >= 2:\n",
" #look 2 positions back\n",
" try:\n",
" del weighted_list_[list1[index-12][0]]\n",
" except:\n",
" pass\n",
" try:\n",
" del weighted_list_[list1[index-1][0]]\n",
" except:\n",
" pass\n",
" list1.append(generate_weighted_list(weighted_list_, 1))\n",
" else:\n",
" #we cannot look back otherwise throws error\n",
" list1.append(generate_weighted_list(weighted_list_, 1))\n",
"\n",
" list1 = [x[0] for x in list1] \n",
" return list1"
]
},
{
"cell_type": "code",
"execution_count": 18,
"metadata": {},
"outputs": [
{
"name": "stderr",
"output_type": "stream",
"text": [
"C:\\Users\\ardit\\AppData\\Local\\Temp\\ipykernel_21100\\3657193565.py:78: SettingWithCopyWarning: \n",
"A value is trying to be set on a copy of a slice from a DataFrame.\n",
"Try using .loc[row_indexer,col_indexer] = value instead\n",
"\n",
"See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n",
" df_['prompt'] = df_['vertical'].apply(lambda x : prompt+dict1[x])\n",
"C:\\Users\\ardit\\AppData\\Local\\Temp\\ipykernel_21100\\3657193565.py:82: SettingWithCopyWarning: \n",
"A value is trying to be set on a copy of a slice from a DataFrame.\n",
"Try using .loc[row_indexer,col_indexer] = value instead\n",
"\n",
"See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n",
" df_['post'] = df_['prompt'].apply(lambda x : gpt3(x, model='gpt-3.5-turbo', service='azure'))\n"
]
},
{
"data": {
"text/html": [
"<div>\n",
"<style scoped>\n",
" .dataframe tbody tr th:only-of-type {\n",
" vertical-align: middle;\n",
" }\n",
"\n",
" .dataframe tbody tr th {\n",
" vertical-align: top;\n",
" }\n",
"\n",
" .dataframe thead th {\n",
" text-align: right;\n",
" }\n",
"</style>\n",
"<table border=\"1\" class=\"dataframe\">\n",
" <thead>\n",
" <tr style=\"text-align: right;\">\n",
" <th></th>\n",
" <th>date</th>\n",
" <th>weekday</th>\n",
" <th>vertical</th>\n",
" <th>post</th>\n",
" </tr>\n",
" </thead>\n",
" <tbody>\n",
" <tr>\n",
" <th>0</th>\n",
" <td>2023-11-01</td>\n",
" <td>Wednesday</td>\n",
" <td>happyHour</td>\n",
" <td>🍹🍹 It's time to unwind and enjoy happy hour at...</td>\n",
" </tr>\n",
" <tr>\n",
" <th>1</th>\n",
" <td>2023-11-02</td>\n",
" <td>Thursday</td>\n",
" <td>wedding</td>\n",
" <td>👰💍🌴 Get ready to say \"I do\" or fall even more ...</td>\n",
" </tr>\n",
" </tbody>\n",
"</table>\n",
"</div>"
],
"text/plain": [
" date weekday vertical \\\n",
"0 2023-11-01 Wednesday happyHour \n",
"1 2023-11-02 Thursday wedding \n",
"\n",
" post \n",
"0 🍹🍹 It's time to unwind and enjoy happy hour at... \n",
"1 👰💍🌴 Get ready to say \"I do\" or fall even more ... "
]
},
"execution_count": 18,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"import pandas as pd\n",
"\n",
"def generate_content(month, max_days):\n",
"\n",
" weighted_list = {\n",
" 'yogaClasses' : 4,\n",
" 'swim' : 4,\n",
" 'mixology' : 4,\n",
" 'happyHour' : 6,\n",
" 'weekend' : 0,\n",
" 'wedding' : 2,\n",
" 'tentedVilla' : 2,\n",
" 'farmhouse' : 2,\n",
" 'retreats' : 2\n",
" }\n",
"\n",
" dates = pd.date_range(start=f'2023-{month}-01', end=f'2023-{month}-30')\n",
" df = pd.DataFrame({'date': dates, 'weekday': dates.strftime('%A')})\n",
" df['vertical'] = kapuhala_list(weighted_list, df['weekday'].values.tolist(), len(df))\n",
" #add weekend topic on fridays\n",
" df.loc[df[df['weekday']=='Friday'].index.tolist(), 'vertical'] = 'weekend'\n",
" df\n",
"\n",
" df_ = df[0:max_days]\n",
" df_\n",
"\n",
" dict1 = {\n",
" 'yogaClasses' : \"\"\"\n",
" Find your inner zen and boost your fitness routine with our invigorating yoga and fitness classes at Kapuhala Koh Samui Surrounded by stunning nature, enjoy our incredible dishes and take advantage of our very instagrammable infinity pool. The ultimate wellness experience awaits you!\n",
" \"\"\",\n",
" 'swim' : \"\"\"\n",
" At Halapua Restaurant we offer a Mediterranean-inspired menu using fresh seasonal ingredients and vegetables.\n",
" With your lunch reservation you can enjoy our infinity pool with breath taking views, it’s the perfect way to spend a half day on this tropical island! Open everyday except Mondays.\n",
" \"\"\",\n",
" 'mixology' : \"\"\"\n",
" Halapua restaurant and mixology lounge is the only unapologetically plant-based high-end dining experience on the island. We maintain strict standards and staff training to grant you the best experience! Book your table today!\n",
" \"\"\",\n",
" 'happyHour' : \"\"\"\n",
" Come for the happy hour at Kapuhala Koh Samui from 3pm to 6pm.\n",
" By getting 2 drinks you will receive a complimentary plate of snack from our kitchen! \n",
" \"\"\",\n",
" 'weekend' : \"\"\"\n",
" Pass your Weekend with us at Kapuhala Koh Samui! \n",
" Book a table on the best plant based restaurant on the island.\n",
" Sicilian inspired cuisine made with local ingredients.\n",
" \"\"\",\n",
" 'wedding' : \"\"\"\n",
" Wedding reception or honeymoon at Kapuhala.\n",
" Our gorgeous, secluded spot offers everything you need for an unforgettable, intimate event.\n",
" Our experienced team is here to help you create your dream event. Whether it’s a small gathering of friends or an extravagant celebration, we’ll make sure that your special day is just as perfect as you imagined.\n",
" Experience the paradise of Kapuhala! Plan your dream wedding or honeymoon here and let us make it all happen\n",
" \"\"\",\n",
" 'tentedVilla' : \"\"\"\n",
" Book our TENTED VILLA at Kapuhala Koh Samui - Live Without Walls!\n",
" Sleeps 2 adults (Max with 1-2 more kids)\n",
" At Kapuhala Koh Samui you have a unique opportunity to sleep surrounded by the ambient sounds of the jungle, yet still enjoy the comforts and amenities of a hotel room. We invite you to experience a different, more natural way of living.\n",
" Become one with your surroundings, connect to the natural world around you and experience something as simple as waking up or taking a shower in an entirely new way.\n",
" All our Tented Villas are fully detached en suite structures with a private terrace where you can greet the sunrise or enjoy your breakfast. The villas are modular and with removable panels enabling you to enjoy the spectacular nature around you.\n",
" \"\"\",\n",
" 'farmhouse' : \"\"\"\n",
" Kapuhala Koh Samui - Farmhouse\n",
" Nestled on the edge of a hill, these no ordinary, architecturally unique Farmhouses are fully detached rooms with separate entrances built on top of large rocks – a natural geological wonder of the area.\n",
" Conveniently positioned close to the main building just across our tropical farm. Each house is 27 sq. m. and sleeps 2 people in a queen-size bed. Perfect for a single person or couple.\n",
" Wake up daily to a serene sea view of the bay and enjoy the breath taking sunrises on your private balcony.\n",
" \"\"\",\n",
" 'retreats' : \"\"\"\n",
" Are you ready to take your mental and physical capabilities to the next level?\n",
" Yoga, Fitness and Nutrition!\n",
" Come join us at Kapuhala for an exclusive Superhuman retreat and experience the power of true, natural Biohacking.\n",
" At Kapuhala Koh Samui you will be sharing your day with Stefano Passarello, Crystal Lee and other entrepreneurial minds and forward thinkers just like you.\n",
" Through our 5 day protocol you'll be able to maximize your mental performance, increase creativity, and optimize physical performance.\n",
" What are you waiting for? Join us at Kapuhala and unlock your superhuman capabilities!\n",
" We can also help you organize a tailor made retreat on the dates that best suit your needs.\n",
" \"\"\"\n",
" }\n",
"\n",
" prompt = 'Write a social media post-caption about this: add emoji, add hashtags at the end :'\n",
" df_['prompt'] = df_['vertical'].apply(lambda x : prompt+dict1[x])\n",
" # df_ = df_[0:3]\n",
"\n",
" \n",
" df_['post'] = df_['prompt'].apply(lambda x : gpt3(x, model='gpt-3.5-turbo', service='azure'))\n",
" # df_['post'] = df_['prompt'].apply(lambda x : 'mmm')\n",
" return df_.drop('prompt', axis=1)\n",
"\n",
"df_content = generate_content(11, 2)\n",
"df_content"
]
},
{
"cell_type": "code",
"execution_count": 19,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"<function __main__.generate_content(month, max_days)>"
]
},
"execution_count": 19,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"generate_content"
]
},
{
"cell_type": "code",
"execution_count": 20,
"metadata": {},
"outputs": [
{
"name": "stderr",
"output_type": "stream",
"text": [
"c:\\Users\\ardit\\AppData\\Local\\Programs\\Python\\Python39\\lib\\site-packages\\gradio\\deprecation.py:43: UserWarning: You have unused kwarg parameters in Radio, please remove them: {'multiselect': False}\n",
" warnings.warn(\n"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Running on local URL: http://127.0.0.1:7865\n",
"\n",
"To create a public link, set `share=True` in `launch()`.\n"
]
},
{
"data": {
"text/html": [
"<div><iframe src=\"http://127.0.0.1:7865/\" width=\"100%\" height=\"500\" allow=\"autoplay; camera; microphone; clipboard-read; clipboard-write;\" frameborder=\"0\" allowfullscreen></iframe></div>"
],
"text/plain": [
"<IPython.core.display.HTML object>"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"text/plain": []
},
"execution_count": 20,
"metadata": {},
"output_type": "execute_result"
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"C:\\Users\\ardit\\AppData\\Local\\Temp\\ipykernel_21100\\3657193565.py:78: SettingWithCopyWarning: \n",
"A value is trying to be set on a copy of a slice from a DataFrame.\n",
"Try using .loc[row_indexer,col_indexer] = value instead\n",
"\n",
"See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n",
" df_['prompt'] = df_['vertical'].apply(lambda x : prompt+dict1[x])\n",
"C:\\Users\\ardit\\AppData\\Local\\Temp\\ipykernel_21100\\3657193565.py:82: SettingWithCopyWarning: \n",
"A value is trying to be set on a copy of a slice from a DataFrame.\n",
"Try using .loc[row_indexer,col_indexer] = value instead\n",
"\n",
"See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n",
" df_['post'] = df_['prompt'].apply(lambda x : gpt3(x, model='gpt-3.5-turbo', service='azure'))\n"
]
}
],
"source": [
"import gradio as gr\n",
"\n",
"with gr.Blocks(theme=gr.themes.Soft(primary_hue='amber', secondary_hue='gray', neutral_hue='amber')) as demo:\n",
" gr.Markdown(\n",
" \"\"\"\n",
" # Content Calendar Generator\n",
" \"\"\"\n",
" )\n",
" # input1 = gr.Slider(1, 31, value=5, step_size=10, label=\"# Days\")\n",
" input1 = gr.Slider(1, 12, step=1, value=5, label=\"Month\")\n",
" input2 = gr.Radio([1, 3, 5, 10, 30], multiselect=False, label='# Days', value=3)\n",
" # input3 = gr.Radio(['Manhattan', 'Brooklyn', 'Queens', 'Bronx'], multiselect=False, label='State', value='Brooklyn')\n",
" # input4 = gr.Textbox(label='Query', value='I want to take a break from work 😴!!!')\n",
"\n",
" btn = gr.Button(value=\"Generate Content\")\n",
" output1 = gr.Dataframe()\n",
" # btn.click(greet, inputs='text', outputs=['dataframe'])\n",
" btn.click(generate_content, [input1, input2], [output1])\n",
"demo.launch(share=False)"
]
},
{
"cell_type": "code",
"execution_count": 8,
"metadata": {},
"outputs": [
{
"name": "stderr",
"output_type": "stream",
"text": [
"c:\\Users\\ardit\\AppData\\Local\\Programs\\Python\\Python39\\lib\\site-packages\\gradio\\deprecation.py:43: UserWarning: You have unused kwarg parameters in Radio, please remove them: {'multiselect': False}\n",
" warnings.warn(\n",
"c:\\Users\\ardit\\AppData\\Local\\Programs\\Python\\Python39\\lib\\site-packages\\gradio\\utils.py:951: UserWarning: Expected 0 arguments for function <function foo at 0x0000022D98619EE0>, received 1.\n",
" warnings.warn(\n",
"c:\\Users\\ardit\\AppData\\Local\\Programs\\Python\\Python39\\lib\\site-packages\\gradio\\utils.py:959: UserWarning: Expected maximum 0 arguments for function <function foo at 0x0000022D98619EE0>, received 1.\n",
" warnings.warn(\n"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Running on local URL: http://127.0.0.1:7861\n",
"\n",
"To create a public link, set `share=True` in `launch()`.\n"
]
},
{
"data": {
"text/html": [
"<div><iframe src=\"http://127.0.0.1:7861/\" width=\"100%\" height=\"500\" allow=\"autoplay; camera; microphone; clipboard-read; clipboard-write;\" frameborder=\"0\" allowfullscreen></iframe></div>"
],
"text/plain": [
"<IPython.core.display.HTML object>"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"text/plain": []
},
"execution_count": 8,
"metadata": {},
"output_type": "execute_result"
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"C:\\Users\\ardit\\AppData\\Local\\Temp\\ipykernel_21100\\1929261880.py:58: SettingWithCopyWarning: \n",
"A value is trying to be set on a copy of a slice from a DataFrame.\n",
"Try using .loc[row_indexer,col_indexer] = value instead\n",
"\n",
"See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n",
" df_['prompt'] = df_['vertical'].apply(lambda x : prompt+dict1[x])\n",
"C:\\Users\\ardit\\AppData\\Local\\Temp\\ipykernel_21100\\1929261880.py:62: SettingWithCopyWarning: \n",
"A value is trying to be set on a copy of a slice from a DataFrame.\n",
"Try using .loc[row_indexer,col_indexer] = value instead\n",
"\n",
"See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n",
" df_['post'] = df_['prompt'].apply(lambda x : gpt3(x, model='gpt-3.5-turbo', service='azure'))\n"
]
}
],
"source": [
"import gradio as gr\n",
"\n",
"def foo():\n",
" return 0\n",
"\n",
"with gr.Blocks(theme=gr.themes.Soft(primary_hue='amber', secondary_hue='gray', neutral_hue='amber')) as demo:\n",
" gr.Markdown(\n",
" \"\"\"\n",
" # Message generator\n",
" \"\"\"\n",
" )\n",
" input1 = gr.Textbox(label='Input data', placeholder='Insert data from Linkedin here')\n",
" input2 = gr.Radio(['Phishing', 'Sale', 'Feedback'], multiselect=False, label='Type of message')\n",
" input3 = gr.Radio(['Linkedin', 'Instagram', 'Website'], multiselect=False, label='Source of information')\n",
" # input3 = gr.Radio(['Manhattan', 'Brooklyn', 'Queens', 'Bronx'], multiselect=False, label='State', value='Brooklyn')\n",
" # input4 = gr.Textbox(label='Query', value='I want to take a break from work 😴!!!')\n",
"\n",
" btn = gr.Button(value=\"Generate Message\")\n",
" output1 = gr.Textbox()\n",
" # btn.click(greet, inputs='text', outputs=['dataframe'])\n",
" btn.click(foo, [input1], [output1])\n",
"demo.launch(share=False)"
]
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.9.13"
},
"orig_nbformat": 4
},
"nbformat": 4,
"nbformat_minor": 2
}
|