Spaces:
Runtime error
Runtime error
Michelangiolo
commited on
Commit
•
f2092a2
1
Parent(s):
8b29749
v3
Browse files- _test.ipynb +429 -0
- app.py +35 -25
- data_manipulation.ipynb +364 -18
- df_encoded2.parquet +3 -0
- df_encoded3.parquet +3 -0
_test.ipynb
ADDED
@@ -0,0 +1,429 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"cells": [
|
3 |
+
{
|
4 |
+
"cell_type": "code",
|
5 |
+
"execution_count": null,
|
6 |
+
"metadata": {},
|
7 |
+
"outputs": [],
|
8 |
+
"source": [
|
9 |
+
"import os\n",
|
10 |
+
"# os.system('pip install openpyxl')\n",
|
11 |
+
"# os.system('pip install sentence-transformers')\n",
|
12 |
+
"import pandas as pd\n",
|
13 |
+
"import gradio as gr\n",
|
14 |
+
"from sentence_transformers import SentenceTransformer\n",
|
15 |
+
"\n",
|
16 |
+
"model = SentenceTransformer('all-mpnet-base-v2') #all-MiniLM-L6-v2 #all-mpnet-base-v2\n",
|
17 |
+
"\n",
|
18 |
+
"df = pd.read_parquet('df_encoded3.parquet')\n",
|
19 |
+
"df['tags'] = df['tags'].apply(lambda x : str(x))\n",
|
20 |
+
"def parse_raised(x):\n",
|
21 |
+
" if x == 'Undisclosed':\n",
|
22 |
+
" return 0\n",
|
23 |
+
" else: \n",
|
24 |
+
" quantifier = x[-1]\n",
|
25 |
+
" x = float(x[1:-1])\n",
|
26 |
+
" if quantifier == 'K':\n",
|
27 |
+
" return x/1000\n",
|
28 |
+
" elif quantifier == 'M':\n",
|
29 |
+
" return x\n",
|
30 |
+
"df['raised'] = df['raised'].apply(lambda x : parse_raised(x))\n",
|
31 |
+
"df['stage'] = df['stage'].apply(lambda x : x.lower())\n",
|
32 |
+
"df = df.reset_index(drop=True)\n",
|
33 |
+
"\n",
|
34 |
+
"from sklearn.neighbors import NearestNeighbors\n",
|
35 |
+
"import pandas as pd\n",
|
36 |
+
"from sentence_transformers import SentenceTransformer\n",
|
37 |
+
"\n",
|
38 |
+
"nbrs = NearestNeighbors(n_neighbors=5000, algorithm='ball_tree').fit(df['text_vector_'].values.tolist())\n",
|
39 |
+
"\n",
|
40 |
+
"def search(df, query):\n",
|
41 |
+
" product = model.encode(query).tolist()\n",
|
42 |
+
" # product = df.iloc[0]['text_vector_'] #use one of the products as sample\n",
|
43 |
+
"\n",
|
44 |
+
" #prepare model\n",
|
45 |
+
" # \n",
|
46 |
+
" distances, indices = nbrs.kneighbors([product]) #input the vector of the reference object\n",
|
47 |
+
"\n",
|
48 |
+
" #print out the description of every recommended product\n",
|
49 |
+
" return df.iloc[list(indices)[0]][['name', 'raised', 'target', 'size', 'stage', 'country', 'source', 'description', 'tags']]"
|
50 |
+
]
|
51 |
+
},
|
52 |
+
{
|
53 |
+
"cell_type": "code",
|
54 |
+
"execution_count": 44,
|
55 |
+
"metadata": {},
|
56 |
+
"outputs": [
|
57 |
+
{
|
58 |
+
"name": "stderr",
|
59 |
+
"output_type": "stream",
|
60 |
+
"text": [
|
61 |
+
"c:\\Users\\ardit\\AppData\\Local\\Programs\\Python\\Python39\\lib\\site-packages\\gradio\\deprecation.py:43: UserWarning: You have unused kwarg parameters in Radio, please remove them: {'multiselect': False}\n",
|
62 |
+
" warnings.warn(\n"
|
63 |
+
]
|
64 |
+
},
|
65 |
+
{
|
66 |
+
"name": "stdout",
|
67 |
+
"output_type": "stream",
|
68 |
+
"text": [
|
69 |
+
"Running on local URL: http://127.0.0.1:7884\n",
|
70 |
+
"\n",
|
71 |
+
"To create a public link, set `share=True` in `launch()`.\n"
|
72 |
+
]
|
73 |
+
},
|
74 |
+
{
|
75 |
+
"data": {
|
76 |
+
"text/html": [
|
77 |
+
"<div><iframe src=\"http://127.0.0.1:7884/\" width=\"100%\" height=\"500\" allow=\"autoplay; camera; microphone; clipboard-read; clipboard-write;\" frameborder=\"0\" allowfullscreen></iframe></div>"
|
78 |
+
],
|
79 |
+
"text/plain": [
|
80 |
+
"<IPython.core.display.HTML object>"
|
81 |
+
]
|
82 |
+
},
|
83 |
+
"metadata": {},
|
84 |
+
"output_type": "display_data"
|
85 |
+
},
|
86 |
+
{
|
87 |
+
"data": {
|
88 |
+
"text/plain": []
|
89 |
+
},
|
90 |
+
"execution_count": 44,
|
91 |
+
"metadata": {},
|
92 |
+
"output_type": "execute_result"
|
93 |
+
},
|
94 |
+
{
|
95 |
+
"data": {
|
96 |
+
"text/html": [
|
97 |
+
"<div>\n",
|
98 |
+
"<style scoped>\n",
|
99 |
+
" .dataframe tbody tr th:only-of-type {\n",
|
100 |
+
" vertical-align: middle;\n",
|
101 |
+
" }\n",
|
102 |
+
"\n",
|
103 |
+
" .dataframe tbody tr th {\n",
|
104 |
+
" vertical-align: top;\n",
|
105 |
+
" }\n",
|
106 |
+
"\n",
|
107 |
+
" .dataframe thead th {\n",
|
108 |
+
" text-align: right;\n",
|
109 |
+
" }\n",
|
110 |
+
"</style>\n",
|
111 |
+
"<table border=\"1\" class=\"dataframe\">\n",
|
112 |
+
" <thead>\n",
|
113 |
+
" <tr style=\"text-align: right;\">\n",
|
114 |
+
" <th></th>\n",
|
115 |
+
" <th>name</th>\n",
|
116 |
+
" <th>raised</th>\n",
|
117 |
+
" <th>target</th>\n",
|
118 |
+
" <th>size</th>\n",
|
119 |
+
" <th>stage</th>\n",
|
120 |
+
" <th>country</th>\n",
|
121 |
+
" <th>source</th>\n",
|
122 |
+
" <th>description</th>\n",
|
123 |
+
" <th>tags</th>\n",
|
124 |
+
" </tr>\n",
|
125 |
+
" </thead>\n",
|
126 |
+
" <tbody>\n",
|
127 |
+
" <tr>\n",
|
128 |
+
" <th>78931</th>\n",
|
129 |
+
" <td>Developeration</td>\n",
|
130 |
+
" <td>Undisclosed</td>\n",
|
131 |
+
" <td>Undisclosed</td>\n",
|
132 |
+
" <td>11-500+</td>\n",
|
133 |
+
" <td>c</td>\n",
|
134 |
+
" <td>sweden</td>\n",
|
135 |
+
" <td>https://www.startupblink.com</td>\n",
|
136 |
+
" <td>Developeration AB was founded 2016 and is a st...</td>\n",
|
137 |
+
" <td>['healthtech']</td>\n",
|
138 |
+
" </tr>\n",
|
139 |
+
" <tr>\n",
|
140 |
+
" <th>77566</th>\n",
|
141 |
+
" <td>ComplyAdvantage</td>\n",
|
142 |
+
" <td>Undisclosed</td>\n",
|
143 |
+
" <td>Undisclosed</td>\n",
|
144 |
+
" <td>11-500+</td>\n",
|
145 |
+
" <td>c</td>\n",
|
146 |
+
" <td>united-kingdom</td>\n",
|
147 |
+
" <td>https://www.startupblink.com</td>\n",
|
148 |
+
" <td>We are a financial crime solutions provider co...</td>\n",
|
149 |
+
" <td>['fintech']</td>\n",
|
150 |
+
" </tr>\n",
|
151 |
+
" <tr>\n",
|
152 |
+
" <th>78674</th>\n",
|
153 |
+
" <td>Atlas</td>\n",
|
154 |
+
" <td>Undisclosed</td>\n",
|
155 |
+
" <td>Undisclosed</td>\n",
|
156 |
+
" <td>11-500+</td>\n",
|
157 |
+
" <td>c</td>\n",
|
158 |
+
" <td>russia</td>\n",
|
159 |
+
" <td>https://www.startupblink.com</td>\n",
|
160 |
+
" <td>Atlas Biomedical Holding is developing a netwo...</td>\n",
|
161 |
+
" <td>['healthtech']</td>\n",
|
162 |
+
" </tr>\n",
|
163 |
+
" <tr>\n",
|
164 |
+
" <th>81682</th>\n",
|
165 |
+
" <td>48 Factoring Inc</td>\n",
|
166 |
+
" <td>Undisclosed</td>\n",
|
167 |
+
" <td>Undisclosed</td>\n",
|
168 |
+
" <td>11-500+</td>\n",
|
169 |
+
" <td>c</td>\n",
|
170 |
+
" <td>united-states</td>\n",
|
171 |
+
" <td>https://www.startupblink.com</td>\n",
|
172 |
+
" <td>48 Factoring Inc. is a financial services comp...</td>\n",
|
173 |
+
" <td>['fintech']</td>\n",
|
174 |
+
" </tr>\n",
|
175 |
+
" <tr>\n",
|
176 |
+
" <th>78926</th>\n",
|
177 |
+
" <td>Xinca</td>\n",
|
178 |
+
" <td>Undisclosed</td>\n",
|
179 |
+
" <td>Undisclosed</td>\n",
|
180 |
+
" <td>11-500+</td>\n",
|
181 |
+
" <td>c</td>\n",
|
182 |
+
" <td>argentina</td>\n",
|
183 |
+
" <td>https://www.startupblink.com</td>\n",
|
184 |
+
" <td>Incorporar residuos en la fabricaci&oacute;n d...</td>\n",
|
185 |
+
" <td>['energy' 'environment']</td>\n",
|
186 |
+
" </tr>\n",
|
187 |
+
" <tr>\n",
|
188 |
+
" <th>...</th>\n",
|
189 |
+
" <td>...</td>\n",
|
190 |
+
" <td>...</td>\n",
|
191 |
+
" <td>...</td>\n",
|
192 |
+
" <td>...</td>\n",
|
193 |
+
" <td>...</td>\n",
|
194 |
+
" <td>...</td>\n",
|
195 |
+
" <td>...</td>\n",
|
196 |
+
" <td>...</td>\n",
|
197 |
+
" <td>...</td>\n",
|
198 |
+
" </tr>\n",
|
199 |
+
" <tr>\n",
|
200 |
+
" <th>80432</th>\n",
|
201 |
+
" <td>Glow</td>\n",
|
202 |
+
" <td>Undisclosed</td>\n",
|
203 |
+
" <td>Undisclosed</td>\n",
|
204 |
+
" <td>11-500+</td>\n",
|
205 |
+
" <td>c</td>\n",
|
206 |
+
" <td>china</td>\n",
|
207 |
+
" <td>https://www.startupblink.com</td>\n",
|
208 |
+
" <td>Glow is an ambitious enterprise that uniquely ...</td>\n",
|
209 |
+
" <td>['healthtech']</td>\n",
|
210 |
+
" </tr>\n",
|
211 |
+
" <tr>\n",
|
212 |
+
" <th>77716</th>\n",
|
213 |
+
" <td>Owiwi</td>\n",
|
214 |
+
" <td>Undisclosed</td>\n",
|
215 |
+
" <td>Undisclosed</td>\n",
|
216 |
+
" <td>11-500+</td>\n",
|
217 |
+
" <td>c</td>\n",
|
218 |
+
" <td>greece</td>\n",
|
219 |
+
" <td>https://www.startupblink.com</td>\n",
|
220 |
+
" <td>Owiwi is a fun and engaging psychometric tool ...</td>\n",
|
221 |
+
" <td>['software' 'data']</td>\n",
|
222 |
+
" </tr>\n",
|
223 |
+
" <tr>\n",
|
224 |
+
" <th>78561</th>\n",
|
225 |
+
" <td>Quantib</td>\n",
|
226 |
+
" <td>Undisclosed</td>\n",
|
227 |
+
" <td>Undisclosed</td>\n",
|
228 |
+
" <td>11-500+</td>\n",
|
229 |
+
" <td>c</td>\n",
|
230 |
+
" <td>the-netherlands</td>\n",
|
231 |
+
" <td>https://www.startupblink.com</td>\n",
|
232 |
+
" <td>MRI scan technology to better diagnose -- and ...</td>\n",
|
233 |
+
" <td>['healthtech']</td>\n",
|
234 |
+
" </tr>\n",
|
235 |
+
" <tr>\n",
|
236 |
+
" <th>77554</th>\n",
|
237 |
+
" <td>Earnin</td>\n",
|
238 |
+
" <td>Undisclosed</td>\n",
|
239 |
+
" <td>Undisclosed</td>\n",
|
240 |
+
" <td>11-500+</td>\n",
|
241 |
+
" <td>c</td>\n",
|
242 |
+
" <td>united-states</td>\n",
|
243 |
+
" <td>https://www.startupblink.com</td>\n",
|
244 |
+
" <td>We're building a platform of community-support...</td>\n",
|
245 |
+
" <td>['fintech']</td>\n",
|
246 |
+
" </tr>\n",
|
247 |
+
" <tr>\n",
|
248 |
+
" <th>80694</th>\n",
|
249 |
+
" <td>Vibrent Health</td>\n",
|
250 |
+
" <td>Undisclosed</td>\n",
|
251 |
+
" <td>Undisclosed</td>\n",
|
252 |
+
" <td>11-500+</td>\n",
|
253 |
+
" <td>c</td>\n",
|
254 |
+
" <td>united-states</td>\n",
|
255 |
+
" <td>https://www.startupblink.com</td>\n",
|
256 |
+
" <td>The future of developing new cures for patient...</td>\n",
|
257 |
+
" <td>['healthtech']</td>\n",
|
258 |
+
" </tr>\n",
|
259 |
+
" </tbody>\n",
|
260 |
+
"</table>\n",
|
261 |
+
"<p>94 rows × 9 columns</p>\n",
|
262 |
+
"</div>"
|
263 |
+
],
|
264 |
+
"text/plain": [
|
265 |
+
" name raised target size stage \\\n",
|
266 |
+
"78931 Developeration Undisclosed Undisclosed 11-500+ c \n",
|
267 |
+
"77566 ComplyAdvantage Undisclosed Undisclosed 11-500+ c \n",
|
268 |
+
"78674 Atlas Undisclosed Undisclosed 11-500+ c \n",
|
269 |
+
"81682 48 Factoring Inc Undisclosed Undisclosed 11-500+ c \n",
|
270 |
+
"78926 Xinca Undisclosed Undisclosed 11-500+ c \n",
|
271 |
+
"... ... ... ... ... ... \n",
|
272 |
+
"80432 Glow Undisclosed Undisclosed 11-500+ c \n",
|
273 |
+
"77716 Owiwi Undisclosed Undisclosed 11-500+ c \n",
|
274 |
+
"78561 Quantib Undisclosed Undisclosed 11-500+ c \n",
|
275 |
+
"77554 Earnin Undisclosed Undisclosed 11-500+ c \n",
|
276 |
+
"80694 Vibrent Health Undisclosed Undisclosed 11-500+ c \n",
|
277 |
+
"\n",
|
278 |
+
" country source \\\n",
|
279 |
+
"78931 sweden https://www.startupblink.com \n",
|
280 |
+
"77566 united-kingdom https://www.startupblink.com \n",
|
281 |
+
"78674 russia https://www.startupblink.com \n",
|
282 |
+
"81682 united-states https://www.startupblink.com \n",
|
283 |
+
"78926 argentina https://www.startupblink.com \n",
|
284 |
+
"... ... ... \n",
|
285 |
+
"80432 china https://www.startupblink.com \n",
|
286 |
+
"77716 greece https://www.startupblink.com \n",
|
287 |
+
"78561 the-netherlands https://www.startupblink.com \n",
|
288 |
+
"77554 united-states https://www.startupblink.com \n",
|
289 |
+
"80694 united-states https://www.startupblink.com \n",
|
290 |
+
"\n",
|
291 |
+
" description \\\n",
|
292 |
+
"78931 Developeration AB was founded 2016 and is a st... \n",
|
293 |
+
"77566 We are a financial crime solutions provider co... \n",
|
294 |
+
"78674 Atlas Biomedical Holding is developing a netwo... \n",
|
295 |
+
"81682 48 Factoring Inc. is a financial services comp... \n",
|
296 |
+
"78926 Incorporar residuos en la fabricación d... \n",
|
297 |
+
"... ... \n",
|
298 |
+
"80432 Glow is an ambitious enterprise that uniquely ... \n",
|
299 |
+
"77716 Owiwi is a fun and engaging psychometric tool ... \n",
|
300 |
+
"78561 MRI scan technology to better diagnose -- and ... \n",
|
301 |
+
"77554 We're building a platform of community-support... \n",
|
302 |
+
"80694 The future of developing new cures for patient... \n",
|
303 |
+
"\n",
|
304 |
+
" tags \n",
|
305 |
+
"78931 ['healthtech'] \n",
|
306 |
+
"77566 ['fintech'] \n",
|
307 |
+
"78674 ['healthtech'] \n",
|
308 |
+
"81682 ['fintech'] \n",
|
309 |
+
"78926 ['energy' 'environment'] \n",
|
310 |
+
"... ... \n",
|
311 |
+
"80432 ['healthtech'] \n",
|
312 |
+
"77716 ['software' 'data'] \n",
|
313 |
+
"78561 ['healthtech'] \n",
|
314 |
+
"77554 ['fintech'] \n",
|
315 |
+
"80694 ['healthtech'] \n",
|
316 |
+
"\n",
|
317 |
+
"[94 rows x 9 columns]"
|
318 |
+
]
|
319 |
+
},
|
320 |
+
"metadata": {},
|
321 |
+
"output_type": "display_data"
|
322 |
+
}
|
323 |
+
],
|
324 |
+
"source": [
|
325 |
+
"def filter_df(df, column_name, filter_type, filter_value, minimum_acceptable_size=0):\n",
|
326 |
+
" if filter_type == '==':\n",
|
327 |
+
" df_filtered = df[df[column_name]==filter_value]\n",
|
328 |
+
" elif filter_type == '>=':\n",
|
329 |
+
" df_filtered = df[df[column_name]>=filter_value]\n",
|
330 |
+
" elif filter_type == '<=':\n",
|
331 |
+
" df_filtered = df[df[column_name]<=filter_value]\n",
|
332 |
+
" elif filter_type == 'contains':\n",
|
333 |
+
" df_filtered = df[df['target'].str.contains(filter_value)]\n",
|
334 |
+
"\n",
|
335 |
+
" if df_filtered.size >= minimum_acceptable_size:\n",
|
336 |
+
" return df_filtered\n",
|
337 |
+
" else:\n",
|
338 |
+
" return df\n",
|
339 |
+
"\n",
|
340 |
+
"#the first module becomes text1, the second module file1\n",
|
341 |
+
"def greet(size, target, stage, query): \n",
|
342 |
+
" def raised_zero(x):\n",
|
343 |
+
" if x == 0:\n",
|
344 |
+
" return 'Undisclosed'\n",
|
345 |
+
" else:\n",
|
346 |
+
" return x\n",
|
347 |
+
" df_knn = search(df, query)\n",
|
348 |
+
" #we live the sorting for last\n",
|
349 |
+
" df_knn = df_knn.sort_values('raised', ascending=False)\n",
|
350 |
+
" df_knn['raised'] = df_knn['raised'].apply(lambda x : raised_zero(x))\n",
|
351 |
+
"\n",
|
352 |
+
" df_size = filter_df(df_knn, 'size', '==', size, 1000)\n",
|
353 |
+
" df_target = filter_df(df_size, 'target', 'contains', target, 20)\n",
|
354 |
+
" df_stage = filter_df(df_target, 'stage', '==', stage.lower(), 10)\n",
|
355 |
+
" \n",
|
356 |
+
" display(df_stage)\n",
|
357 |
+
" # df_raised = df_target[(df_target['raised'] >= raised) | (df_target['raised'] == 0)]\n",
|
358 |
+
"\n",
|
359 |
+
" return df_stage[0:100]\n",
|
360 |
+
"\n",
|
361 |
+
"with gr.Blocks(theme=gr.themes.Soft(primary_hue='amber', secondary_hue='gray', neutral_hue='amber')) as demo:\n",
|
362 |
+
" gr.Markdown(\n",
|
363 |
+
" \"\"\"\n",
|
364 |
+
" # Startup Search Engine\n",
|
365 |
+
" \"\"\"\n",
|
366 |
+
" )\n",
|
367 |
+
" size = gr.Radio(['1-10', '11-50', '51-200', '201-500', '500+', '11-500+'], multiselect=False, value='11-500+', label='size')\n",
|
368 |
+
" target = gr.Radio(['B2B', 'B2C', 'B2G', 'B2B2C'], multiselect=False, value='B2B', label='target')\n",
|
369 |
+
" stage = gr.Radio(['pre-seed', 'A', 'B', 'C', 'exit'], multiselect=False, value='C', label='stage')\n",
|
370 |
+
" # raised = gr.Slider(0, 20, value=5, step_size=1, label=\"Minimum raising (in Millions)\")\n",
|
371 |
+
" query = gr.Textbox(label='Describe the Startup you are searching for', value='age reversing')\n",
|
372 |
+
" btn = gr.Button(value=\"Search for a Startup\")\n",
|
373 |
+
" output1 = gr.DataFrame(label='value')\n",
|
374 |
+
" # btn.click(greet, inputs='text', outputs=['dataframe'])\n",
|
375 |
+
" btn.click(greet, [size, target, stage, query], [output1])\n",
|
376 |
+
"demo.launch(share=False)"
|
377 |
+
]
|
378 |
+
},
|
379 |
+
{
|
380 |
+
"cell_type": "code",
|
381 |
+
"execution_count": null,
|
382 |
+
"metadata": {},
|
383 |
+
"outputs": [],
|
384 |
+
"source": [
|
385 |
+
"# Define database of sentences\n",
|
386 |
+
"sentences = pd.Series(['The quick brown fox jumps over the lazy dog',\n",
|
387 |
+
" 'A quick brown dog jumps over the lazy fox',\n",
|
388 |
+
" 'The lazy dog jumps over the quick brown fox',\n",
|
389 |
+
" 'The quick brown fox jumps over the lazy cat',\n",
|
390 |
+
" 'The quick brown cat jumps over the lazy dog'])\n",
|
391 |
+
"\n",
|
392 |
+
"# Encode sentences\n",
|
393 |
+
"sentence_embeddings = model.encode(sentences)\n",
|
394 |
+
"\n",
|
395 |
+
"# Define query sentence\n",
|
396 |
+
"query = 'A lazy dog jumps over the quick brown fox'\n",
|
397 |
+
"\n",
|
398 |
+
"# Encode query\n",
|
399 |
+
"query_embedding = model.encode(query)\n",
|
400 |
+
"\n",
|
401 |
+
"# Search for similar sentences\n",
|
402 |
+
"cosine_scores = util.pytorch_cos_sim(query_embedding, sentence_embeddings)\n",
|
403 |
+
"most_similar_sentence = sentences[cosine_scores.argmax()]"
|
404 |
+
]
|
405 |
+
}
|
406 |
+
],
|
407 |
+
"metadata": {
|
408 |
+
"kernelspec": {
|
409 |
+
"display_name": "Python 3",
|
410 |
+
"language": "python",
|
411 |
+
"name": "python3"
|
412 |
+
},
|
413 |
+
"language_info": {
|
414 |
+
"codemirror_mode": {
|
415 |
+
"name": "ipython",
|
416 |
+
"version": 3
|
417 |
+
},
|
418 |
+
"file_extension": ".py",
|
419 |
+
"mimetype": "text/x-python",
|
420 |
+
"name": "python",
|
421 |
+
"nbconvert_exporter": "python",
|
422 |
+
"pygments_lexer": "ipython3",
|
423 |
+
"version": "3.9.13"
|
424 |
+
},
|
425 |
+
"orig_nbformat": 4
|
426 |
+
},
|
427 |
+
"nbformat": 4,
|
428 |
+
"nbformat_minor": 2
|
429 |
+
}
|
app.py
CHANGED
@@ -7,7 +7,7 @@ from sentence_transformers import SentenceTransformer
|
|
7 |
|
8 |
model = SentenceTransformer('all-mpnet-base-v2') #all-MiniLM-L6-v2 #all-mpnet-base-v2
|
9 |
|
10 |
-
df = pd.read_parquet('
|
11 |
df['tags'] = df['tags'].apply(lambda x : str(x))
|
12 |
def parse_raised(x):
|
13 |
if x == 'Undisclosed':
|
@@ -20,52 +20,61 @@ def parse_raised(x):
|
|
20 |
elif quantifier == 'M':
|
21 |
return x
|
22 |
df['raised'] = df['raised'].apply(lambda x : parse_raised(x))
|
|
|
23 |
df = df.reset_index(drop=True)
|
24 |
|
25 |
from sklearn.neighbors import NearestNeighbors
|
26 |
import pandas as pd
|
27 |
from sentence_transformers import SentenceTransformer
|
28 |
|
29 |
-
|
30 |
-
if filter_type == '==':
|
31 |
-
df_filtered = df[df[column_name]==filter_value]
|
32 |
-
elif filter_type == '>=':
|
33 |
-
df_filtered = df[df[column_name]>=filter_value]
|
34 |
-
elif filter_type == '<=':
|
35 |
-
df_filtered = df[df[column_name]<=filter_value]
|
36 |
-
elif filter_type == 'contains':
|
37 |
-
df_filtered = df[df['target'].str.contains(filter_value)]
|
38 |
-
return df_filtered
|
39 |
|
40 |
def search(df, query):
|
41 |
product = model.encode(query).tolist()
|
42 |
# product = df.iloc[0]['text_vector_'] #use one of the products as sample
|
43 |
|
44 |
#prepare model
|
45 |
-
|
46 |
-
|
47 |
distances, indices = nbrs.kneighbors([product]) #input the vector of the reference object
|
48 |
|
49 |
#print out the description of every recommended product
|
50 |
-
return df.iloc[list(indices)[0]][['name', '
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
51 |
|
52 |
#the first module becomes text1, the second module file1
|
53 |
-
def greet(size, target,
|
54 |
-
df_size = filter_df(df, 'size', '==', size)
|
55 |
-
df_target = filter_df(df_size, 'target', 'contains', target)
|
56 |
def raised_zero(x):
|
57 |
if x == 0:
|
58 |
return 'Undisclosed'
|
59 |
else:
|
60 |
return x
|
61 |
-
|
62 |
-
df_raised = df_target[(df_target['raised'] >= raised) | (df_target['raised'] == 0)]
|
63 |
-
df_knn = search(df_raised, query)
|
64 |
#we live the sorting for last
|
65 |
df_knn = df_knn.sort_values('raised', ascending=False)
|
66 |
df_knn['raised'] = df_knn['raised'].apply(lambda x : raised_zero(x))
|
67 |
|
68 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
69 |
|
70 |
with gr.Blocks(theme=gr.themes.Soft(primary_hue='amber', secondary_hue='gray', neutral_hue='amber')) as demo:
|
71 |
gr.Markdown(
|
@@ -73,12 +82,13 @@ with gr.Blocks(theme=gr.themes.Soft(primary_hue='amber', secondary_hue='gray', n
|
|
73 |
# Startup Search Engine
|
74 |
"""
|
75 |
)
|
76 |
-
size = gr.Radio(['1-10', '11-50', '51-200', '201-500', '500+'], multiselect=False, value='11-
|
77 |
-
target = gr.Radio(['B2B', 'B2C', 'B2G', 'B2B2C'], value='B2B',
|
78 |
-
|
|
|
79 |
query = gr.Textbox(label='Describe the Startup you are searching for', value='age reversing')
|
80 |
btn = gr.Button(value="Search for a Startup")
|
81 |
output1 = gr.DataFrame(label='value')
|
82 |
# btn.click(greet, inputs='text', outputs=['dataframe'])
|
83 |
-
btn.click(greet, [size, target,
|
84 |
demo.launch(share=False)
|
|
|
7 |
|
8 |
model = SentenceTransformer('all-mpnet-base-v2') #all-MiniLM-L6-v2 #all-mpnet-base-v2
|
9 |
|
10 |
+
df = pd.read_parquet('df_encoded3.parquet')
|
11 |
df['tags'] = df['tags'].apply(lambda x : str(x))
|
12 |
def parse_raised(x):
|
13 |
if x == 'Undisclosed':
|
|
|
20 |
elif quantifier == 'M':
|
21 |
return x
|
22 |
df['raised'] = df['raised'].apply(lambda x : parse_raised(x))
|
23 |
+
df['stage'] = df['stage'].apply(lambda x : x.lower())
|
24 |
df = df.reset_index(drop=True)
|
25 |
|
26 |
from sklearn.neighbors import NearestNeighbors
|
27 |
import pandas as pd
|
28 |
from sentence_transformers import SentenceTransformer
|
29 |
|
30 |
+
nbrs = NearestNeighbors(n_neighbors=5000, algorithm='ball_tree').fit(df['text_vector_'].values.tolist())
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
31 |
|
32 |
def search(df, query):
|
33 |
product = model.encode(query).tolist()
|
34 |
# product = df.iloc[0]['text_vector_'] #use one of the products as sample
|
35 |
|
36 |
#prepare model
|
37 |
+
#
|
|
|
38 |
distances, indices = nbrs.kneighbors([product]) #input the vector of the reference object
|
39 |
|
40 |
#print out the description of every recommended product
|
41 |
+
return df.iloc[list(indices)[0]][['name', 'raised', 'target', 'size', 'stage', 'country', 'source', 'description', 'tags']]
|
42 |
+
|
43 |
+
def filter_df(df, column_name, filter_type, filter_value, minimum_acceptable_size=0):
|
44 |
+
if filter_type == '==':
|
45 |
+
df_filtered = df[df[column_name]==filter_value]
|
46 |
+
elif filter_type == '>=':
|
47 |
+
df_filtered = df[df[column_name]>=filter_value]
|
48 |
+
elif filter_type == '<=':
|
49 |
+
df_filtered = df[df[column_name]<=filter_value]
|
50 |
+
elif filter_type == 'contains':
|
51 |
+
df_filtered = df[df['target'].str.contains(filter_value)]
|
52 |
+
|
53 |
+
if df_filtered.size >= minimum_acceptable_size:
|
54 |
+
return df_filtered
|
55 |
+
else:
|
56 |
+
return df
|
57 |
|
58 |
#the first module becomes text1, the second module file1
|
59 |
+
def greet(size, target, stage, query):
|
|
|
|
|
60 |
def raised_zero(x):
|
61 |
if x == 0:
|
62 |
return 'Undisclosed'
|
63 |
else:
|
64 |
return x
|
65 |
+
df_knn = search(df, query)
|
|
|
|
|
66 |
#we live the sorting for last
|
67 |
df_knn = df_knn.sort_values('raised', ascending=False)
|
68 |
df_knn['raised'] = df_knn['raised'].apply(lambda x : raised_zero(x))
|
69 |
|
70 |
+
df_size = filter_df(df_knn, 'size', '==', size, 1000)
|
71 |
+
df_target = filter_df(df_size, 'target', 'contains', target, 20)
|
72 |
+
df_stage = filter_df(df_target, 'stage', '==', stage.lower(), 10)
|
73 |
+
|
74 |
+
display(df_stage)
|
75 |
+
# df_raised = df_target[(df_target['raised'] >= raised) | (df_target['raised'] == 0)]
|
76 |
+
|
77 |
+
return df_stage[0:100]
|
78 |
|
79 |
with gr.Blocks(theme=gr.themes.Soft(primary_hue='amber', secondary_hue='gray', neutral_hue='amber')) as demo:
|
80 |
gr.Markdown(
|
|
|
82 |
# Startup Search Engine
|
83 |
"""
|
84 |
)
|
85 |
+
size = gr.Radio(['1-10', '11-50', '51-200', '201-500', '500+', '11-500+'], multiselect=False, value='11-500+', label='size')
|
86 |
+
target = gr.Radio(['B2B', 'B2C', 'B2G', 'B2B2C'], multiselect=False, value='B2B', label='target')
|
87 |
+
stage = gr.Radio(['pre-seed', 'A', 'B', 'C', 'exit'], multiselect=False, value='C', label='stage')
|
88 |
+
# raised = gr.Slider(0, 20, value=5, step_size=1, label="Minimum raising (in Millions)")
|
89 |
query = gr.Textbox(label='Describe the Startup you are searching for', value='age reversing')
|
90 |
btn = gr.Button(value="Search for a Startup")
|
91 |
output1 = gr.DataFrame(label='value')
|
92 |
# btn.click(greet, inputs='text', outputs=['dataframe'])
|
93 |
+
btn.click(greet, [size, target, stage, query], [output1])
|
94 |
demo.launch(share=False)
|
data_manipulation.ipynb
CHANGED
@@ -2,7 +2,49 @@
|
|
2 |
"cells": [
|
3 |
{
|
4 |
"cell_type": "code",
|
5 |
-
"execution_count":
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
6 |
"metadata": {},
|
7 |
"outputs": [
|
8 |
{
|
@@ -34,6 +76,8 @@
|
|
34 |
" <th>stage</th>\n",
|
35 |
" <th>raised</th>\n",
|
36 |
" <th>tags</th>\n",
|
|
|
|
|
37 |
" <th>text_vector_</th>\n",
|
38 |
" </tr>\n",
|
39 |
" </thead>\n",
|
@@ -48,6 +92,8 @@
|
|
48 |
" <td>Pre-Funding</td>\n",
|
49 |
" <td>Undisclosed</td>\n",
|
50 |
" <td>[connected-vehicles, adas, autonomous-vehicles...</td>\n",
|
|
|
|
|
51 |
" <td>[-0.031224824488162994, -0.06342269480228424, ...</td>\n",
|
52 |
" </tr>\n",
|
53 |
" <tr>\n",
|
@@ -60,6 +106,8 @@
|
|
60 |
" <td>Pre-Funding</td>\n",
|
61 |
" <td>Undisclosed</td>\n",
|
62 |
" <td>[sdg, schools, pre-k, serious-games, games, mo...</td>\n",
|
|
|
|
|
63 |
" <td>[-0.038649097084999084, 0.028091922402381897, ...</td>\n",
|
64 |
" </tr>\n",
|
65 |
" <tr>\n",
|
@@ -72,6 +120,8 @@
|
|
72 |
" <td>Seed</td>\n",
|
73 |
" <td>$120M</td>\n",
|
74 |
" <td>[pharmaceuticals, chronic-disease, immunology,...</td>\n",
|
|
|
|
|
75 |
" <td>[0.04561534896492958, -0.017776092514395714, 0...</td>\n",
|
76 |
" </tr>\n",
|
77 |
" <tr>\n",
|
@@ -84,6 +134,8 @@
|
|
84 |
" <td>A</td>\n",
|
85 |
" <td>$25M</td>\n",
|
86 |
" <td>[omni-channel, ecommerce, climate-tech, artifi...</td>\n",
|
|
|
|
|
87 |
" <td>[0.0024080690927803516, -0.03042100928723812, ...</td>\n",
|
88 |
" </tr>\n",
|
89 |
" <tr>\n",
|
@@ -96,6 +148,8 @@
|
|
96 |
" <td>A</td>\n",
|
97 |
" <td>$16.1M</td>\n",
|
98 |
" <td>[enterprise-solutions, data-protection, cyber-...</td>\n",
|
|
|
|
|
99 |
" <td>[-0.01007091999053955, 0.10431888699531555, -0...</td>\n",
|
100 |
" </tr>\n",
|
101 |
" <tr>\n",
|
@@ -109,6 +163,8 @@
|
|
109 |
" <td>...</td>\n",
|
110 |
" <td>...</td>\n",
|
111 |
" <td>...</td>\n",
|
|
|
|
|
112 |
" </tr>\n",
|
113 |
" <tr>\n",
|
114 |
" <th>4981</th>\n",
|
@@ -120,6 +176,8 @@
|
|
120 |
" <td>Pre-Funding</td>\n",
|
121 |
" <td>Undisclosed</td>\n",
|
122 |
" <td>[content-creators, e-learning, software-applic...</td>\n",
|
|
|
|
|
123 |
" <td>[0.026961881667375565, 0.002459645736962557, -...</td>\n",
|
124 |
" </tr>\n",
|
125 |
" <tr>\n",
|
@@ -132,6 +190,8 @@
|
|
132 |
" <td>Pre-Funding</td>\n",
|
133 |
" <td>Undisclosed</td>\n",
|
134 |
" <td>[ecommerce, p2p, delivery, online-shopping, ma...</td>\n",
|
|
|
|
|
135 |
" <td>[0.0036857957020401955, 0.03582162782549858, -...</td>\n",
|
136 |
" </tr>\n",
|
137 |
" <tr>\n",
|
@@ -144,6 +204,8 @@
|
|
144 |
" <td>Mature</td>\n",
|
145 |
" <td>Undisclosed</td>\n",
|
146 |
" <td>[crops, agtech, harvesting, machinery, sdg, cl...</td>\n",
|
|
|
|
|
147 |
" <td>[0.027293115854263306, 0.010461761616170406, 0...</td>\n",
|
148 |
" </tr>\n",
|
149 |
" <tr>\n",
|
@@ -156,6 +218,8 @@
|
|
156 |
" <td>Pre-Funding</td>\n",
|
157 |
" <td>Undisclosed</td>\n",
|
158 |
" <td>[fitness, digital-wallet, discount, mobile-app...</td>\n",
|
|
|
|
|
159 |
" <td>[0.02851911261677742, 0.05474231392145157, -0....</td>\n",
|
160 |
" </tr>\n",
|
161 |
" <tr>\n",
|
@@ -168,11 +232,13 @@
|
|
168 |
" <td>Seed</td>\n",
|
169 |
" <td>$10M</td>\n",
|
170 |
" <td>[endoscopy, medical-devices, minimally-invasiv...</td>\n",
|
|
|
|
|
171 |
" <td>[0.012587728910148144, -0.07959864288568497, -...</td>\n",
|
172 |
" </tr>\n",
|
173 |
" </tbody>\n",
|
174 |
"</table>\n",
|
175 |
-
"<p>4986 rows ×
|
176 |
"</div>"
|
177 |
],
|
178 |
"text/plain": [
|
@@ -202,18 +268,31 @@
|
|
202 |
"4984 2017.0 B2B, B2C, B2G 11-50 Pre-Funding Undisclosed \n",
|
203 |
"4985 2013.0 B2B 11-50 Seed $10M \n",
|
204 |
"\n",
|
205 |
-
" tags \\\n",
|
206 |
-
"0 [connected-vehicles, adas, autonomous-vehicles... \n",
|
207 |
-
"1 [sdg, schools, pre-k, serious-games, games, mo... \n",
|
208 |
-
"2 [pharmaceuticals, chronic-disease, immunology,... \n",
|
209 |
-
"3 [omni-channel, ecommerce, climate-tech, artifi... \n",
|
210 |
-
"4 [enterprise-solutions, data-protection, cyber-... \n",
|
211 |
-
"... ... \n",
|
212 |
-
"4981 [content-creators, e-learning, software-applic... \n",
|
213 |
-
"4982 [ecommerce, p2p, delivery, online-shopping, ma... \n",
|
214 |
-
"4983 [crops, agtech, harvesting, machinery, sdg, cl... \n",
|
215 |
-
"4984 [fitness, digital-wallet, discount, mobile-app... \n",
|
216 |
-
"4985 [endoscopy, medical-devices, minimally-invasiv... \n",
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
217 |
"\n",
|
218 |
" text_vector_ \n",
|
219 |
"0 [-0.031224824488162994, -0.06342269480228424, ... \n",
|
@@ -228,10 +307,10 @@
|
|
228 |
"4984 [0.02851911261677742, 0.05474231392145157, -0.... \n",
|
229 |
"4985 [0.012587728910148144, -0.07959864288568497, -... \n",
|
230 |
"\n",
|
231 |
-
"[4986 rows x
|
232 |
]
|
233 |
},
|
234 |
-
"execution_count":
|
235 |
"metadata": {},
|
236 |
"output_type": "execute_result"
|
237 |
}
|
@@ -239,8 +318,275 @@
|
|
239 |
"source": [
|
240 |
"import pandas as pd\n",
|
241 |
"\n",
|
242 |
-
"
|
243 |
-
"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
244 |
]
|
245 |
},
|
246 |
{
|
|
|
2 |
"cells": [
|
3 |
{
|
4 |
"cell_type": "code",
|
5 |
+
"execution_count": 4,
|
6 |
+
"metadata": {},
|
7 |
+
"outputs": [
|
8 |
+
{
|
9 |
+
"data": {
|
10 |
+
"text/plain": [
|
11 |
+
"array(['Pre-Funding', 'Seed', 'A', 'Mature', 'C', 'Public', 'D',\n",
|
12 |
+
" 'Pre-Seed', 'B', 'Debt Financing', 'F', 'Crowdfunding', 'E'],\n",
|
13 |
+
" dtype=object)"
|
14 |
+
]
|
15 |
+
},
|
16 |
+
"execution_count": 4,
|
17 |
+
"metadata": {},
|
18 |
+
"output_type": "execute_result"
|
19 |
+
}
|
20 |
+
],
|
21 |
+
"source": [
|
22 |
+
"df1.stage.unique()"
|
23 |
+
]
|
24 |
+
},
|
25 |
+
{
|
26 |
+
"cell_type": "code",
|
27 |
+
"execution_count": 5,
|
28 |
+
"metadata": {},
|
29 |
+
"outputs": [
|
30 |
+
{
|
31 |
+
"data": {
|
32 |
+
"text/plain": [
|
33 |
+
"array([0., 3., 1., 4., 2., 5.])"
|
34 |
+
]
|
35 |
+
},
|
36 |
+
"execution_count": 5,
|
37 |
+
"metadata": {},
|
38 |
+
"output_type": "execute_result"
|
39 |
+
}
|
40 |
+
],
|
41 |
+
"source": [
|
42 |
+
"df2.stage.unique()"
|
43 |
+
]
|
44 |
+
},
|
45 |
+
{
|
46 |
+
"cell_type": "code",
|
47 |
+
"execution_count": 2,
|
48 |
"metadata": {},
|
49 |
"outputs": [
|
50 |
{
|
|
|
76 |
" <th>stage</th>\n",
|
77 |
" <th>raised</th>\n",
|
78 |
" <th>tags</th>\n",
|
79 |
+
" <th>country</th>\n",
|
80 |
+
" <th>source</th>\n",
|
81 |
" <th>text_vector_</th>\n",
|
82 |
" </tr>\n",
|
83 |
" </thead>\n",
|
|
|
92 |
" <td>Pre-Funding</td>\n",
|
93 |
" <td>Undisclosed</td>\n",
|
94 |
" <td>[connected-vehicles, adas, autonomous-vehicles...</td>\n",
|
95 |
+
" <td>Israel</td>\n",
|
96 |
+
" <td>https://finder.startupnationcentral.org/</td>\n",
|
97 |
" <td>[-0.031224824488162994, -0.06342269480228424, ...</td>\n",
|
98 |
" </tr>\n",
|
99 |
" <tr>\n",
|
|
|
106 |
" <td>Pre-Funding</td>\n",
|
107 |
" <td>Undisclosed</td>\n",
|
108 |
" <td>[sdg, schools, pre-k, serious-games, games, mo...</td>\n",
|
109 |
+
" <td>Israel</td>\n",
|
110 |
+
" <td>https://finder.startupnationcentral.org/</td>\n",
|
111 |
" <td>[-0.038649097084999084, 0.028091922402381897, ...</td>\n",
|
112 |
" </tr>\n",
|
113 |
" <tr>\n",
|
|
|
120 |
" <td>Seed</td>\n",
|
121 |
" <td>$120M</td>\n",
|
122 |
" <td>[pharmaceuticals, chronic-disease, immunology,...</td>\n",
|
123 |
+
" <td>Israel</td>\n",
|
124 |
+
" <td>https://finder.startupnationcentral.org/</td>\n",
|
125 |
" <td>[0.04561534896492958, -0.017776092514395714, 0...</td>\n",
|
126 |
" </tr>\n",
|
127 |
" <tr>\n",
|
|
|
134 |
" <td>A</td>\n",
|
135 |
" <td>$25M</td>\n",
|
136 |
" <td>[omni-channel, ecommerce, climate-tech, artifi...</td>\n",
|
137 |
+
" <td>Israel</td>\n",
|
138 |
+
" <td>https://finder.startupnationcentral.org/</td>\n",
|
139 |
" <td>[0.0024080690927803516, -0.03042100928723812, ...</td>\n",
|
140 |
" </tr>\n",
|
141 |
" <tr>\n",
|
|
|
148 |
" <td>A</td>\n",
|
149 |
" <td>$16.1M</td>\n",
|
150 |
" <td>[enterprise-solutions, data-protection, cyber-...</td>\n",
|
151 |
+
" <td>Israel</td>\n",
|
152 |
+
" <td>https://finder.startupnationcentral.org/</td>\n",
|
153 |
" <td>[-0.01007091999053955, 0.10431888699531555, -0...</td>\n",
|
154 |
" </tr>\n",
|
155 |
" <tr>\n",
|
|
|
163 |
" <td>...</td>\n",
|
164 |
" <td>...</td>\n",
|
165 |
" <td>...</td>\n",
|
166 |
+
" <td>...</td>\n",
|
167 |
+
" <td>...</td>\n",
|
168 |
" </tr>\n",
|
169 |
" <tr>\n",
|
170 |
" <th>4981</th>\n",
|
|
|
176 |
" <td>Pre-Funding</td>\n",
|
177 |
" <td>Undisclosed</td>\n",
|
178 |
" <td>[content-creators, e-learning, software-applic...</td>\n",
|
179 |
+
" <td>Israel</td>\n",
|
180 |
+
" <td>https://finder.startupnationcentral.org/</td>\n",
|
181 |
" <td>[0.026961881667375565, 0.002459645736962557, -...</td>\n",
|
182 |
" </tr>\n",
|
183 |
" <tr>\n",
|
|
|
190 |
" <td>Pre-Funding</td>\n",
|
191 |
" <td>Undisclosed</td>\n",
|
192 |
" <td>[ecommerce, p2p, delivery, online-shopping, ma...</td>\n",
|
193 |
+
" <td>Israel</td>\n",
|
194 |
+
" <td>https://finder.startupnationcentral.org/</td>\n",
|
195 |
" <td>[0.0036857957020401955, 0.03582162782549858, -...</td>\n",
|
196 |
" </tr>\n",
|
197 |
" <tr>\n",
|
|
|
204 |
" <td>Mature</td>\n",
|
205 |
" <td>Undisclosed</td>\n",
|
206 |
" <td>[crops, agtech, harvesting, machinery, sdg, cl...</td>\n",
|
207 |
+
" <td>Israel</td>\n",
|
208 |
+
" <td>https://finder.startupnationcentral.org/</td>\n",
|
209 |
" <td>[0.027293115854263306, 0.010461761616170406, 0...</td>\n",
|
210 |
" </tr>\n",
|
211 |
" <tr>\n",
|
|
|
218 |
" <td>Pre-Funding</td>\n",
|
219 |
" <td>Undisclosed</td>\n",
|
220 |
" <td>[fitness, digital-wallet, discount, mobile-app...</td>\n",
|
221 |
+
" <td>Israel</td>\n",
|
222 |
+
" <td>https://finder.startupnationcentral.org/</td>\n",
|
223 |
" <td>[0.02851911261677742, 0.05474231392145157, -0....</td>\n",
|
224 |
" </tr>\n",
|
225 |
" <tr>\n",
|
|
|
232 |
" <td>Seed</td>\n",
|
233 |
" <td>$10M</td>\n",
|
234 |
" <td>[endoscopy, medical-devices, minimally-invasiv...</td>\n",
|
235 |
+
" <td>Israel</td>\n",
|
236 |
+
" <td>https://finder.startupnationcentral.org/</td>\n",
|
237 |
" <td>[0.012587728910148144, -0.07959864288568497, -...</td>\n",
|
238 |
" </tr>\n",
|
239 |
" </tbody>\n",
|
240 |
"</table>\n",
|
241 |
+
"<p>4986 rows × 11 columns</p>\n",
|
242 |
"</div>"
|
243 |
],
|
244 |
"text/plain": [
|
|
|
268 |
"4984 2017.0 B2B, B2C, B2G 11-50 Pre-Funding Undisclosed \n",
|
269 |
"4985 2013.0 B2B 11-50 Seed $10M \n",
|
270 |
"\n",
|
271 |
+
" tags country \\\n",
|
272 |
+
"0 [connected-vehicles, adas, autonomous-vehicles... Israel \n",
|
273 |
+
"1 [sdg, schools, pre-k, serious-games, games, mo... Israel \n",
|
274 |
+
"2 [pharmaceuticals, chronic-disease, immunology,... Israel \n",
|
275 |
+
"3 [omni-channel, ecommerce, climate-tech, artifi... Israel \n",
|
276 |
+
"4 [enterprise-solutions, data-protection, cyber-... Israel \n",
|
277 |
+
"... ... ... \n",
|
278 |
+
"4981 [content-creators, e-learning, software-applic... Israel \n",
|
279 |
+
"4982 [ecommerce, p2p, delivery, online-shopping, ma... Israel \n",
|
280 |
+
"4983 [crops, agtech, harvesting, machinery, sdg, cl... Israel \n",
|
281 |
+
"4984 [fitness, digital-wallet, discount, mobile-app... Israel \n",
|
282 |
+
"4985 [endoscopy, medical-devices, minimally-invasiv... Israel \n",
|
283 |
+
"\n",
|
284 |
+
" source \\\n",
|
285 |
+
"0 https://finder.startupnationcentral.org/ \n",
|
286 |
+
"1 https://finder.startupnationcentral.org/ \n",
|
287 |
+
"2 https://finder.startupnationcentral.org/ \n",
|
288 |
+
"3 https://finder.startupnationcentral.org/ \n",
|
289 |
+
"4 https://finder.startupnationcentral.org/ \n",
|
290 |
+
"... ... \n",
|
291 |
+
"4981 https://finder.startupnationcentral.org/ \n",
|
292 |
+
"4982 https://finder.startupnationcentral.org/ \n",
|
293 |
+
"4983 https://finder.startupnationcentral.org/ \n",
|
294 |
+
"4984 https://finder.startupnationcentral.org/ \n",
|
295 |
+
"4985 https://finder.startupnationcentral.org/ \n",
|
296 |
"\n",
|
297 |
" text_vector_ \n",
|
298 |
"0 [-0.031224824488162994, -0.06342269480228424, ... \n",
|
|
|
307 |
"4984 [0.02851911261677742, 0.05474231392145157, -0.... \n",
|
308 |
"4985 [0.012587728910148144, -0.07959864288568497, -... \n",
|
309 |
"\n",
|
310 |
+
"[4986 rows x 11 columns]"
|
311 |
]
|
312 |
},
|
313 |
+
"execution_count": 2,
|
314 |
"metadata": {},
|
315 |
"output_type": "execute_result"
|
316 |
}
|
|
|
318 |
"source": [
|
319 |
"import pandas as pd\n",
|
320 |
"\n",
|
321 |
+
"df1 = pd.read_parquet('df_encoded.parquet')\n",
|
322 |
+
"df1"
|
323 |
+
]
|
324 |
+
},
|
325 |
+
{
|
326 |
+
"cell_type": "code",
|
327 |
+
"execution_count": 3,
|
328 |
+
"metadata": {},
|
329 |
+
"outputs": [
|
330 |
+
{
|
331 |
+
"data": {
|
332 |
+
"text/html": [
|
333 |
+
"<div>\n",
|
334 |
+
"<style scoped>\n",
|
335 |
+
" .dataframe tbody tr th:only-of-type {\n",
|
336 |
+
" vertical-align: middle;\n",
|
337 |
+
" }\n",
|
338 |
+
"\n",
|
339 |
+
" .dataframe tbody tr th {\n",
|
340 |
+
" vertical-align: top;\n",
|
341 |
+
" }\n",
|
342 |
+
"\n",
|
343 |
+
" .dataframe thead th {\n",
|
344 |
+
" text-align: right;\n",
|
345 |
+
" }\n",
|
346 |
+
"</style>\n",
|
347 |
+
"<table border=\"1\" class=\"dataframe\">\n",
|
348 |
+
" <thead>\n",
|
349 |
+
" <tr style=\"text-align: right;\">\n",
|
350 |
+
" <th></th>\n",
|
351 |
+
" <th>title</th>\n",
|
352 |
+
" <th>description</th>\n",
|
353 |
+
" <th>stage</th>\n",
|
354 |
+
" <th>industry_name</th>\n",
|
355 |
+
" <th>url</th>\n",
|
356 |
+
" <th>country_slug</th>\n",
|
357 |
+
" <th>city_slug</th>\n",
|
358 |
+
" <th>location</th>\n",
|
359 |
+
" <th>region_name</th>\n",
|
360 |
+
" <th>text_vector_</th>\n",
|
361 |
+
" </tr>\n",
|
362 |
+
" </thead>\n",
|
363 |
+
" <tbody>\n",
|
364 |
+
" <tr>\n",
|
365 |
+
" <th>0</th>\n",
|
366 |
+
" <td>Digipal</td>\n",
|
367 |
+
" <td>Digipal is a digital consultancy based in Tbil...</td>\n",
|
368 |
+
" <td>0.0</td>\n",
|
369 |
+
" <td>Software & Data</td>\n",
|
370 |
+
" <td>https://www.digipal.agency/</td>\n",
|
371 |
+
" <td>georgia</td>\n",
|
372 |
+
" <td>tbilisi</td>\n",
|
373 |
+
" <td>Tbilisi, Georgia</td>\n",
|
374 |
+
" <td>Europe</td>\n",
|
375 |
+
" <td>[0.017287444323301315, 0.06208805367350578, -0...</td>\n",
|
376 |
+
" </tr>\n",
|
377 |
+
" <tr>\n",
|
378 |
+
" <th>1</th>\n",
|
379 |
+
" <td>BeatBind</td>\n",
|
380 |
+
" <td>BeatBind is the industry's long overdue platfo...</td>\n",
|
381 |
+
" <td>0.0</td>\n",
|
382 |
+
" <td>Social & Leisure</td>\n",
|
383 |
+
" <td>https://beatbind.io/</td>\n",
|
384 |
+
" <td>georgia</td>\n",
|
385 |
+
" <td>tbilisi</td>\n",
|
386 |
+
" <td>Tbilisi, Georgia</td>\n",
|
387 |
+
" <td>Europe</td>\n",
|
388 |
+
" <td>[-0.00438214186578989, -0.051213208585977554, ...</td>\n",
|
389 |
+
" </tr>\n",
|
390 |
+
" <tr>\n",
|
391 |
+
" <th>2</th>\n",
|
392 |
+
" <td>Smart Academy</td>\n",
|
393 |
+
" <td>Smart Academy is a modern educational institut...</td>\n",
|
394 |
+
" <td>0.0</td>\n",
|
395 |
+
" <td>Edtech</td>\n",
|
396 |
+
" <td>https://smartacademy.ge/</td>\n",
|
397 |
+
" <td>georgia</td>\n",
|
398 |
+
" <td>tbilisi</td>\n",
|
399 |
+
" <td>Tbilisi, Georgia</td>\n",
|
400 |
+
" <td>Europe</td>\n",
|
401 |
+
" <td>[0.0005468669114634395, -0.05331585183739662, ...</td>\n",
|
402 |
+
" </tr>\n",
|
403 |
+
" <tr>\n",
|
404 |
+
" <th>3</th>\n",
|
405 |
+
" <td>MaxinAI</td>\n",
|
406 |
+
" <td>MaxinAI isglobal AI development company that w...</td>\n",
|
407 |
+
" <td>0.0</td>\n",
|
408 |
+
" <td>Software & Data</td>\n",
|
409 |
+
" <td>https://www.maxinai.com/#all-industries</td>\n",
|
410 |
+
" <td>georgia</td>\n",
|
411 |
+
" <td>tbilisi</td>\n",
|
412 |
+
" <td>Tbilisi, Georgia</td>\n",
|
413 |
+
" <td>Europe</td>\n",
|
414 |
+
" <td>[0.021948501467704773, 0.024166792631149292, -...</td>\n",
|
415 |
+
" </tr>\n",
|
416 |
+
" <tr>\n",
|
417 |
+
" <th>4</th>\n",
|
418 |
+
" <td>TLANCER</td>\n",
|
419 |
+
" <td>Tlancer aims to create an unlimited educationa...</td>\n",
|
420 |
+
" <td>0.0</td>\n",
|
421 |
+
" <td>Edtech</td>\n",
|
422 |
+
" <td>https://www.tlancer.ge/</td>\n",
|
423 |
+
" <td>georgia</td>\n",
|
424 |
+
" <td>tbilisi</td>\n",
|
425 |
+
" <td>Tbilisi, Georgia</td>\n",
|
426 |
+
" <td>Europe</td>\n",
|
427 |
+
" <td>[0.02025573141872883, -0.022812215611338615, -...</td>\n",
|
428 |
+
" </tr>\n",
|
429 |
+
" <tr>\n",
|
430 |
+
" <th>...</th>\n",
|
431 |
+
" <td>...</td>\n",
|
432 |
+
" <td>...</td>\n",
|
433 |
+
" <td>...</td>\n",
|
434 |
+
" <td>...</td>\n",
|
435 |
+
" <td>...</td>\n",
|
436 |
+
" <td>...</td>\n",
|
437 |
+
" <td>...</td>\n",
|
438 |
+
" <td>...</td>\n",
|
439 |
+
" <td>...</td>\n",
|
440 |
+
" <td>...</td>\n",
|
441 |
+
" </tr>\n",
|
442 |
+
" <tr>\n",
|
443 |
+
" <th>94521</th>\n",
|
444 |
+
" <td>OneTwo</td>\n",
|
445 |
+
" <td>klkdčksč kdč skdčlsk čdksčd ksčk dčskdčk čdk</td>\n",
|
446 |
+
" <td>0.0</td>\n",
|
447 |
+
" <td>Software & Data</td>\n",
|
448 |
+
" <td>www.nethr</td>\n",
|
449 |
+
" <td>croatia</td>\n",
|
450 |
+
" <td>zagreb</td>\n",
|
451 |
+
" <td>Zagreb, Croatia</td>\n",
|
452 |
+
" <td>Europe</td>\n",
|
453 |
+
" <td>[0.07235302031040192, -0.05674564838409424, -0...</td>\n",
|
454 |
+
" </tr>\n",
|
455 |
+
" <tr>\n",
|
456 |
+
" <th>94522</th>\n",
|
457 |
+
" <td>Trialfire</td>\n",
|
458 |
+
" <td>Engaged trialers turn into customers, engaged ...</td>\n",
|
459 |
+
" <td>0.0</td>\n",
|
460 |
+
" <td>Software & Data</td>\n",
|
461 |
+
" <td>http://www.trialfire.com</td>\n",
|
462 |
+
" <td>canada</td>\n",
|
463 |
+
" <td>toronto</td>\n",
|
464 |
+
" <td>Toronto, Canada</td>\n",
|
465 |
+
" <td>North America</td>\n",
|
466 |
+
" <td>[0.030764097347855568, 0.054082825779914856, -...</td>\n",
|
467 |
+
" </tr>\n",
|
468 |
+
" <tr>\n",
|
469 |
+
" <th>94523</th>\n",
|
470 |
+
" <td>ILLUMAGEAR</td>\n",
|
471 |
+
" <td>ILLUMAGEAR’s mission is to illuminate people a...</td>\n",
|
472 |
+
" <td>0.0</td>\n",
|
473 |
+
" <td>Software & Data</td>\n",
|
474 |
+
" <td>http://www.illumagear.com</td>\n",
|
475 |
+
" <td>united-states</td>\n",
|
476 |
+
" <td>seattle</td>\n",
|
477 |
+
" <td>Seattle, United States</td>\n",
|
478 |
+
" <td>North America</td>\n",
|
479 |
+
" <td>[0.015447210520505905, -0.0984775498509407, 0....</td>\n",
|
480 |
+
" </tr>\n",
|
481 |
+
" <tr>\n",
|
482 |
+
" <th>94524</th>\n",
|
483 |
+
" <td>Knowillage</td>\n",
|
484 |
+
" <td>Knowillage lets you add personalization to you...</td>\n",
|
485 |
+
" <td>0.0</td>\n",
|
486 |
+
" <td>Edtech</td>\n",
|
487 |
+
" <td>http://www.knowillage.com</td>\n",
|
488 |
+
" <td>canada</td>\n",
|
489 |
+
" <td>vancouver</td>\n",
|
490 |
+
" <td>Vancouver, Canada</td>\n",
|
491 |
+
" <td>North America</td>\n",
|
492 |
+
" <td>[0.007970919832587242, -0.04347420111298561, -...</td>\n",
|
493 |
+
" </tr>\n",
|
494 |
+
" <tr>\n",
|
495 |
+
" <th>94525</th>\n",
|
496 |
+
" <td>Iris Holidays</td>\n",
|
497 |
+
" <td>Iris Holidays is a full service Kerala tours o...</td>\n",
|
498 |
+
" <td>0.0</td>\n",
|
499 |
+
" <td>Software & Data</td>\n",
|
500 |
+
" <td>http://www.irisholidays.com</td>\n",
|
501 |
+
" <td>india</td>\n",
|
502 |
+
" <td>kochi</td>\n",
|
503 |
+
" <td>Kochi, India</td>\n",
|
504 |
+
" <td>Asia Pacific</td>\n",
|
505 |
+
" <td>[0.0032976483926177025, -0.010843133553862572,...</td>\n",
|
506 |
+
" </tr>\n",
|
507 |
+
" </tbody>\n",
|
508 |
+
"</table>\n",
|
509 |
+
"<p>94526 rows × 10 columns</p>\n",
|
510 |
+
"</div>"
|
511 |
+
],
|
512 |
+
"text/plain": [
|
513 |
+
" title description \\\n",
|
514 |
+
"0 Digipal Digipal is a digital consultancy based in Tbil... \n",
|
515 |
+
"1 BeatBind BeatBind is the industry's long overdue platfo... \n",
|
516 |
+
"2 Smart Academy Smart Academy is a modern educational institut... \n",
|
517 |
+
"3 MaxinAI MaxinAI isglobal AI development company that w... \n",
|
518 |
+
"4 TLANCER Tlancer aims to create an unlimited educationa... \n",
|
519 |
+
"... ... ... \n",
|
520 |
+
"94521 OneTwo klkdčksč kdč skdčlsk čdksčd ksčk dčskdčk čdk \n",
|
521 |
+
"94522 Trialfire Engaged trialers turn into customers, engaged ... \n",
|
522 |
+
"94523 ILLUMAGEAR ILLUMAGEAR’s mission is to illuminate people a... \n",
|
523 |
+
"94524 Knowillage Knowillage lets you add personalization to you... \n",
|
524 |
+
"94525 Iris Holidays Iris Holidays is a full service Kerala tours o... \n",
|
525 |
+
"\n",
|
526 |
+
" stage industry_name url \\\n",
|
527 |
+
"0 0.0 Software & Data https://www.digipal.agency/ \n",
|
528 |
+
"1 0.0 Social & Leisure https://beatbind.io/ \n",
|
529 |
+
"2 0.0 Edtech https://smartacademy.ge/ \n",
|
530 |
+
"3 0.0 Software & Data https://www.maxinai.com/#all-industries \n",
|
531 |
+
"4 0.0 Edtech https://www.tlancer.ge/ \n",
|
532 |
+
"... ... ... ... \n",
|
533 |
+
"94521 0.0 Software & Data www.nethr \n",
|
534 |
+
"94522 0.0 Software & Data http://www.trialfire.com \n",
|
535 |
+
"94523 0.0 Software & Data http://www.illumagear.com \n",
|
536 |
+
"94524 0.0 Edtech http://www.knowillage.com \n",
|
537 |
+
"94525 0.0 Software & Data http://www.irisholidays.com \n",
|
538 |
+
"\n",
|
539 |
+
" country_slug city_slug location region_name \\\n",
|
540 |
+
"0 georgia tbilisi Tbilisi, Georgia Europe \n",
|
541 |
+
"1 georgia tbilisi Tbilisi, Georgia Europe \n",
|
542 |
+
"2 georgia tbilisi Tbilisi, Georgia Europe \n",
|
543 |
+
"3 georgia tbilisi Tbilisi, Georgia Europe \n",
|
544 |
+
"4 georgia tbilisi Tbilisi, Georgia Europe \n",
|
545 |
+
"... ... ... ... ... \n",
|
546 |
+
"94521 croatia zagreb Zagreb, Croatia Europe \n",
|
547 |
+
"94522 canada toronto Toronto, Canada North America \n",
|
548 |
+
"94523 united-states seattle Seattle, United States North America \n",
|
549 |
+
"94524 canada vancouver Vancouver, Canada North America \n",
|
550 |
+
"94525 india kochi Kochi, India Asia Pacific \n",
|
551 |
+
"\n",
|
552 |
+
" text_vector_ \n",
|
553 |
+
"0 [0.017287444323301315, 0.06208805367350578, -0... \n",
|
554 |
+
"1 [-0.00438214186578989, -0.051213208585977554, ... \n",
|
555 |
+
"2 [0.0005468669114634395, -0.05331585183739662, ... \n",
|
556 |
+
"3 [0.021948501467704773, 0.024166792631149292, -... \n",
|
557 |
+
"4 [0.02025573141872883, -0.022812215611338615, -... \n",
|
558 |
+
"... ... \n",
|
559 |
+
"94521 [0.07235302031040192, -0.05674564838409424, -0... \n",
|
560 |
+
"94522 [0.030764097347855568, 0.054082825779914856, -... \n",
|
561 |
+
"94523 [0.015447210520505905, -0.0984775498509407, 0.... \n",
|
562 |
+
"94524 [0.007970919832587242, -0.04347420111298561, -... \n",
|
563 |
+
"94525 [0.0032976483926177025, -0.010843133553862572,... \n",
|
564 |
+
"\n",
|
565 |
+
"[94526 rows x 10 columns]"
|
566 |
+
]
|
567 |
+
},
|
568 |
+
"execution_count": 3,
|
569 |
+
"metadata": {},
|
570 |
+
"output_type": "execute_result"
|
571 |
+
}
|
572 |
+
],
|
573 |
+
"source": [
|
574 |
+
"stage_dict = {\n",
|
575 |
+
" 0 : \"pre-seed\",\n",
|
576 |
+
" 1 : \"seed\",\n",
|
577 |
+
" 2 : \"A\",\n",
|
578 |
+
" 3 : \"B\",\n",
|
579 |
+
" 4 : \"C\",\n",
|
580 |
+
" 5 : \"Exit\",\n",
|
581 |
+
"}\n",
|
582 |
+
"\n",
|
583 |
+
"df2 = pd.read_parquet('df_encoded2.parquet')\n",
|
584 |
+
"df2.columns = [['name', 'description', 'stage', 'industry_name', 'url', 'country_slug', 'text_vector_']]\n",
|
585 |
+
"df2['stage'] = df2['stage'].apply(lambda x : stage_dict[x])\n",
|
586 |
+
"df2['raised'] = 'Undisclosed'\n",
|
587 |
+
"df2['size'] = '11-500+'\n",
|
588 |
+
"df2['source'] = 'https://www.startupblink.com'\n",
|
589 |
+
"df2.columns = [['name', 'description', 'stage', 'tags', 'url', 'country_slug', 'text_vector_', 'raised', 'size', 'source']]"
|
590 |
]
|
591 |
},
|
592 |
{
|
df_encoded2.parquet
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:439b1d44d59383eb4eb7c4626b733b4aca9db3c1a6ecf983ffad1c59eb5fd59b
|
3 |
+
size 460066850
|
df_encoded3.parquet
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:724948bf68f31a0c87e397b0d89c95be26dbcd0b769650175a0275d3b22c22e2
|
3 |
+
size 483543661
|