import os os.system('pip install openpyxl') os.system('pip install sentence-transformers') import pandas as pd import gradio as gr from sentence_transformers import SentenceTransformer model = SentenceTransformer('all-mpnet-base-v2') #all-MiniLM-L6-v2 #all-mpnet-base-v2 df = pd.read_parquet('df_encoded3.parquet') df['tags'] = df['tags'].apply(lambda x : str(x)) def parse_raised(x): if x == 'Undisclosed': return 0 else: quantifier = x[-1] x = float(x[1:-1]) if quantifier == 'K': return x/1000 elif quantifier == 'M': return x df['raised'] = df['raised'].apply(lambda x : parse_raised(x)) df['stage'] = df['stage'].apply(lambda x : x.lower()) df = df.reset_index(drop=True) from sklearn.neighbors import NearestNeighbors import pandas as pd from sentence_transformers import SentenceTransformer nbrs = NearestNeighbors(n_neighbors=5000, algorithm='ball_tree').fit(df['text_vector_'].values.tolist()) def search(df, query): product = model.encode(query).tolist() # product = df.iloc[0]['text_vector_'] #use one of the products as sample #prepare model # distances, indices = nbrs.kneighbors([product]) #input the vector of the reference object #print out the description of every recommended product return df.iloc[list(indices)[0]][['name', 'raised', 'target', 'size', 'stage', 'country', 'source', 'description', 'tags']] def filter_df(df, column_name, filter_type, filter_value, minimum_acceptable_size=0): if filter_type == '==': df_filtered = df[df[column_name]==filter_value] elif filter_type == '>=': df_filtered = df[df[column_name]>=filter_value] elif filter_type == '<=': df_filtered = df[df[column_name]<=filter_value] elif filter_type == 'contains': df_filtered = df[df['target'].str.contains(filter_value)] if df_filtered.size >= minimum_acceptable_size: return df_filtered else: return df #the first module becomes text1, the second module file1 def greet(size, target, stage, query): def raised_zero(x): if x == 0: return 'Undisclosed' else: return x df_knn = search(df, query) df_knn['raised'] = df_knn['raised'].apply(lambda x : raised_zero(x)) df_size = filter_df(df_knn, 'size', '==', size, 1) if stage != 'ALL': df_stage = filter_df(df_size, 'stage', '==', stage.lower(), 1) else: #we bypass the filter df_stage = df_size print(df_stage.size) df_target = filter_df(df_stage, 'target', 'contains', target, 1) # display(df_stage) # df_raised = df_target[(df_target['raised'] >= raised) | (df_target['raised'] == 0)] #we live the sorting for last return df_target[0:100] #.sort_values('raised', ascending=False) with gr.Blocks(theme=gr.themes.Soft(primary_hue='amber', secondary_hue='gray', neutral_hue='amber')) as demo: gr.Markdown( """ # Startup Search Engine """ ) size = gr.Radio(['1-10', '11-50', '51-200', '201-500', '500+', '11-500+'], multiselect=False, value='11-500+', label='size') target = gr.Radio(['B2B', 'B2C', 'B2G', 'B2B2C'], multiselect=False, value='B2B', label='target') stage = gr.Radio(['pre-seed', 'A', 'B', 'C', 'ALL'], multiselect=False, value='ALL', label='stage') # raised = gr.Slider(0, 20, value=5, step_size=1, label="Minimum raising (in Millions)") query = gr.Textbox(label='Describe the Startup you are searching for', value='age reversing') btn = gr.Button(value="Search for a Startup") output1 = gr.DataFrame(label='value') # btn.click(greet, inputs='text', outputs=['dataframe']) btn.click(greet, [size, target, stage, query], [output1]) demo.launch(share=False)