Spaces:
Running
Running
import os | |
os.system('pip install openpyxl') | |
os.system('pip install scikit-learn') | |
os.system('pip install sentence-transformers') | |
from sklearn.neighbors import NearestNeighbors | |
import numpy as np | |
import pandas as pd | |
from sentence_transformers import SentenceTransformer | |
model = SentenceTransformer('all-mpnet-base-v2') #all-MiniLM-L6-v2 #all-mpnet-base-v2 | |
df = pd.read_parquet('df.parquet') | |
df2 = pd.read_parquet('df2.parquet') | |
df3 = pd.read_parquet('df3.parquet') | |
#prepare model | |
nbrs1 = NearestNeighbors(n_neighbors=3, algorithm='ball_tree').fit(df2['text_vector_'].values.tolist()) | |
nbrs2 = NearestNeighbors(n_neighbors=3, algorithm='ball_tree').fit(df3['text_vector_'].values.tolist()) | |
def search1(query, nbrs, full_df, cleaned_df): | |
product = model.encode(query).tolist() | |
# product = df.iloc[0]['text_vector_'] #use one of the products as sample | |
distances, indices = nbrs.kneighbors([product]) #input the vector of the reference object | |
#print out the description of every recommended product | |
output = cleaned_df.iloc[list(indices)[0]][['text']] | |
full_text = full_df.loc[range(output.index[0]-1, output.index[0]+2)]['text'].values.tolist() | |
return '\n\n'.join(full_text) | |
def search_sentences(df): | |
df2['text'].str.split('.', expand=True).stack().reset_index(level=1, drop=True).rename('B').reset_index(drop=True)[0:50] | |
output = search1('how to speed up data movement', nbrs=nbrs1, full_df=df, cleaned_df=df2) | |
output | |
import gradio as gr | |
import os | |
#the first module becomes text1, the second module file1 | |
def greet(type, text1): | |
if type == "sentence": | |
return search1(text1, nbrs2, df3, df3) | |
elif type == "paragraph": | |
return search1(text1, nbrs1, df, df2) | |
iface = gr.Interface( | |
fn=greet, | |
inputs=[ | |
gr.Radio(["sentence", "paragraph"]), | |
gr.Textbox(label="text") | |
], | |
outputs=["text"] | |
) | |
iface.launch(share=False) |