Spaces:
Sleeping
Sleeping
Update app
Browse files- app.py +54 -0
- requirements.txt +2 -0
app.py
CHANGED
@@ -0,0 +1,54 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
from transformers import T5ForConditionalGeneration, T5TokenizerFast
|
3 |
+
import nltk
|
4 |
+
from nltk import tokenize
|
5 |
+
|
6 |
+
checkpoint = "yhavinga/t5-base-dutch"
|
7 |
+
tokenizer = T5TokenizerFast.from_pretrained(checkpoint)
|
8 |
+
tokenizer.sep_token = '<sep>'
|
9 |
+
tokenizer.add_tokens(['<sep>'])
|
10 |
+
|
11 |
+
hfmodel = T5ForConditionalGeneration.from_pretrained("Michelvh/t5-end2end-questions-generation-dutch")
|
12 |
+
|
13 |
+
def hf_run_model(input_string, **generator_args):
|
14 |
+
generator_args = {
|
15 |
+
"max_length": 256,
|
16 |
+
"num_beams": 4,
|
17 |
+
"length_penalty": 1.5,
|
18 |
+
"no_repeat_ngram_size": 3,
|
19 |
+
"early_stopping": True,
|
20 |
+
"num_return_sequences": 1,
|
21 |
+
}
|
22 |
+
input_string = "generate questions: " + input_string + " </s>"
|
23 |
+
input_ids = tokenizer.encode(input_string, return_tensors="pt")
|
24 |
+
res = hfmodel.generate(input_ids, **generator_args)
|
25 |
+
output = tokenizer.batch_decode(res, skip_special_tokens=True)
|
26 |
+
output = [item.split("<sep>") for item in output]
|
27 |
+
return output
|
28 |
+
|
29 |
+
|
30 |
+
def chunkText(text, frameSize=5):
|
31 |
+
sentences = tokenize.sent_tokenize(text)
|
32 |
+
frames = []
|
33 |
+
step_size = frameSize - 1
|
34 |
+
for index in range(len(sentences) - step_size + 1):
|
35 |
+
frames.append(" ".join(sentences[index:index + step_size]))
|
36 |
+
return frames
|
37 |
+
|
38 |
+
|
39 |
+
def flatten(l):
|
40 |
+
return [item for sublist in l for item in sublist]
|
41 |
+
|
42 |
+
|
43 |
+
def run_model_with_frames(text):
|
44 |
+
frames = chunkText(text)
|
45 |
+
result = set()
|
46 |
+
for frame in frames:
|
47 |
+
answers = flatten(hf_run_model(frame))
|
48 |
+
for answer in answers:
|
49 |
+
result.add(answer.strip())
|
50 |
+
return result
|
51 |
+
|
52 |
+
|
53 |
+
iface = gr.Interface(fn=run_model_with_frames, inputs="text", outputs="text")
|
54 |
+
iface.launch()
|
requirements.txt
CHANGED
@@ -0,0 +1,2 @@
|
|
|
|
|
|
|
1 |
+
transformers
|
2 |
+
nltk
|