Miguelpef commited on
Commit
ed900af
·
verified ·
1 Parent(s): 7bd08b2

Upload app.py

Browse files
Files changed (1) hide show
  1. app.py +38 -0
app.py ADDED
@@ -0,0 +1,38 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from transformers import AutoTokenizer, AutoModelForSeq2SeqLM
2
+ from peft import PeftModel, PeftConfig
3
+ import gradio as gr
4
+
5
+ # Define the repository ID
6
+ repo_id = "Miguelpef/bart-base-lora-3DPrompt" # Replace with your repository name
7
+
8
+ # Load the PEFT configuration from the Hub
9
+ peft_config = PeftConfig.from_pretrained(repo_id)
10
+
11
+ # Load the base model from the Hub
12
+ model = AutoModelForSeq2SeqLM.from_pretrained(peft_config.base_model_name_or_path)
13
+
14
+ # Load the tokenizer from the Hub
15
+ tokenizer = AutoTokenizer.from_pretrained(repo_id)
16
+
17
+ # Wrap the base model with PEFT
18
+ model = PeftModel.from_pretrained(model, repo_id)
19
+
20
+ # Now you can use the model for inference as before
21
+ def generar_prompt_desde_objeto(objeto):
22
+ prompt = objeto
23
+ inputs = tokenizer(prompt, return_tensors='pt').to(model.device)
24
+ outputs = model.generate(**inputs, max_length=100)
25
+ prompt_generado = tokenizer.decode(outputs[0], skip_special_tokens=True)
26
+ return prompt_generado
27
+
28
+ # Define the Gradio interface
29
+ iface = gr.Interface(
30
+ fn=generar_prompt_desde_objeto,
31
+ inputs=gr.Textbox(lines=2, placeholder="Enter object description here..."),
32
+ outputs="text",
33
+ title="3D Prompt Generator",
34
+ description="Generates 3D prompts from object descriptions using a fine-tuned BART model.",
35
+ )
36
+
37
+ # Launch the interface
38
+ iface.launch()