from transformers import AutoTokenizer, AutoModelForSeq2SeqLM from peft import PeftModel, PeftConfig import gradio as gr # Define the repository ID repo_id = "Miguelpef/bart-base-lora-3DPrompt" # Replace with your repository name # Load the PEFT configuration from the Hub peft_config = PeftConfig.from_pretrained(repo_id) # Load the base model from the Hub model = AutoModelForSeq2SeqLM.from_pretrained(peft_config.base_model_name_or_path) # Load the tokenizer from the Hub tokenizer = AutoTokenizer.from_pretrained(repo_id) # Wrap the base model with PEFT model = PeftModel.from_pretrained(model, repo_id) # Now you can use the model for inference as before def generar_prompt_desde_objeto(objeto): prompt = objeto inputs = tokenizer(prompt, return_tensors='pt').to(model.device) outputs = model.generate(**inputs, max_length=100) prompt_generado = tokenizer.decode(outputs[0], skip_special_tokens=True) return prompt_generado # Define the Gradio interface iface = gr.Interface( fn=generar_prompt_desde_objeto, inputs=gr.Textbox(lines=2, placeholder="Enter object description here..."), outputs="text", title="3D Prompt Generator", description="Generates 3D prompts from object descriptions using a fine-tuned BART model.", ) # Launch the interface iface.launch()