Spaces:
Runtime error
Runtime error
File size: 3,763 Bytes
fc77a86 79bf4a0 fc77a86 f4505d5 a520d79 fc77a86 c0c7ec4 fc77a86 e189b1a fc77a86 48ee1eb fc77a86 48849d1 51c1690 48849d1 fc77a86 51c1690 48ee1eb fc77a86 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 |
# AI MAKERSPACE PREPR
# Date: 2024-5-16
# Basic Imports & Setup
import os
from openai import AsyncOpenAI
# Using Chainlit for our UI
import chainlit as cl
from chainlit.prompt import Prompt, PromptMessage
from chainlit.playground.providers import ChatOpenAI
# Getting the API key from the .env file
from dotenv import load_dotenv
load_dotenv()
# RAG pipeline imports and setup code
# Get the DeveloperWeek PDF file (future implementation: direct download from URL)
from langchain.document_loaders import PyMuPDFLoader
# Adjust the URL to the direct download format
file_id = "1UQnaQjBKKyWAiLdr6UlwSJovOp9zDdxr"
#file_id = "1JeA-w4kvbI3GHk9Dh_j19_Q0JUDE7hse"
# file_id = "12cvKg19CJf-wt98q5sPJctjp5fW-nsh6" //Used for MLOps Meetup
direct_url = f"https://drive.google.com/uc?export=download&id={file_id}"
# Now load the document using the direct URL
docs = PyMuPDFLoader(direct_url).load()
import tiktoken
def tiktoken_len(text):
tokens = tiktoken.encoding_for_model("gpt-3.5-turbo").encode(
text,
)
return len(tokens)
# Split the document into chunks
from langchain.text_splitter import RecursiveCharacterTextSplitter
text_splitter = RecursiveCharacterTextSplitter(
chunk_size = 500, # 500 tokens per chunk, experiment with this value
chunk_overlap = 50, # 50 tokens overlap between chunks, experiment with this value
length_function = tiktoken_len,
)
split_chunks = text_splitter.split_documents(docs)
# Load the embeddings model
from langchain_openai.embeddings import OpenAIEmbeddings
embedding_model = OpenAIEmbeddings(model="text-embedding-3-small")
# Load the vector store and retriever from Qdrant
from langchain_community.vectorstores import Qdrant
qdrant_vectorstore = Qdrant.from_documents(
split_chunks,
embedding_model,
location=":memory:",
collection_name="Prepr",
)
qdrant_retriever = qdrant_vectorstore.as_retriever()
from langchain_openai import ChatOpenAI
openai_chat_model = ChatOpenAI(model="gpt-3.5-turbo")
from langchain_core.prompts import ChatPromptTemplate
RAG_PROMPT = """
SYSTEM:
You are a professional personal assistant who can answer only 4 questions:
1) What is email, you respond: Email Answer.
2) What is research, you respond: Research Answer.
3) What is lecture, you rspond: Lecture Answer.
4) What is grading, you respond: Grading Answer.
CONTEXT:
{context}
QUERY:
{question}
ALL ANWSERS ARE Email Answer, Research Answer, Lecture Answer, or Grading Answer. If you can not answer the question, you respond: Insufficent Data for Further Analysis
"""
rag_prompt = ChatPromptTemplate.from_template(RAG_PROMPT)
from operator import itemgetter
from langchain.schema.output_parser import StrOutputParser
from langchain.schema.runnable import RunnablePassthrough
retrieval_augmented_qa_chain = (
{"context": itemgetter("question") | qdrant_retriever, "question": itemgetter("question")}
| RunnablePassthrough.assign(context=itemgetter("context"))
| {"response": rag_prompt | openai_chat_model, "context": itemgetter("context")}
)
# Chainlit App
@cl.on_chat_start
async def start_chat():
settings = {
"model": "gpt-3.5-turbo",
"temperature": 0,
"max_tokens": 500,
"top_p": 1,
"frequency_penalty": 0,
"presence_penalty": 0,
}
cl.user_session.set("settings", settings)
@cl.on_message
async def main(message: cl.Message):
chainlit_question = message.content
#chainlit_question = "What was the total value of 'Cash and cash equivalents' as of December 31, 2023?"
response = retrieval_augmented_qa_chain.invoke({"question": chainlit_question})
chainlit_answer = response["response"].content
msg = cl.Message(content=chainlit_answer)
await msg.send()
|