Spaces:
Runtime error
Runtime error
# AI MAKERSPACE PREPR | |
# Date: 2024-5-16 | |
# Basic Imports & Setup | |
import os | |
from openai import AsyncOpenAI | |
# Using Chainlit for our UI | |
import chainlit as cl | |
from chainlit.prompt import Prompt, PromptMessage | |
from chainlit.playground.providers import ChatOpenAI | |
# Getting the API key from the .env file | |
from dotenv import load_dotenv | |
load_dotenv() | |
# RAG pipeline imports and setup code | |
# Get the DeveloperWeek PDF file (future implementation: direct download from URL) | |
from langchain.document_loaders import PyMuPDFLoader | |
# Adjust the URL to the direct download format | |
file_id = "1JeA-w4kvbI3GHk9Dh_j19_Q0JUDE7hse" | |
direct_url = f"https://drive.google.com/uc?export=download&id={file_id}" | |
# Now load the document using the direct URL | |
docs = PyMuPDFLoader(direct_url).load() | |
import tiktoken | |
def tiktoken_len(text): | |
tokens = tiktoken.encoding_for_model("gpt-3.5-turbo").encode( | |
text, | |
) | |
return len(tokens) | |
# Split the document into chunks | |
from langchain.text_splitter import RecursiveCharacterTextSplitter | |
text_splitter = RecursiveCharacterTextSplitter( | |
chunk_size = 500, # 500 tokens per chunk, experiment with this value | |
chunk_overlap = 50, # 50 tokens overlap between chunks, experiment with this value | |
length_function = tiktoken_len, | |
) | |
split_chunks = text_splitter.split_documents(docs) | |
# Load the embeddings model | |
from langchain_openai.embeddings import OpenAIEmbeddings | |
embedding_model = OpenAIEmbeddings(model="text-embedding-3-small") | |
# Load the vector store and retriever from Qdrant | |
from langchain_community.vectorstores import Qdrant | |
qdrant_vectorstore = Qdrant.from_documents( | |
split_chunks, | |
embedding_model, | |
location=":memory:", | |
collection_name="Prepr", | |
) | |
qdrant_retriever = qdrant_vectorstore.as_retriever() | |
from langchain_openai import ChatOpenAI | |
openai_chat_model = ChatOpenAI(model="gpt-3.5-turbo") | |
from langchain_core.prompts import ChatPromptTemplate | |
RAG_PROMPT = """ | |
CONTEXT: | |
{context} | |
QUERY: | |
{question} | |
Use the provided context to answer the user's query. You are a professional personal assistant for an executive professional in a high tech company. You help them plan for events and meetings. | |
You always review the provided event information. You can look up dates and location where event sessions take place from the document. If you do not know the answer, or cannot answer, please respond with "Insufficient data for further analysis, please try again". You end your successful responses with "Is there anything else that I can help you with?". If the user says NO, or any other negative response, then you ask "How did I do?" >> | |
""" | |
rag_prompt = ChatPromptTemplate.from_template(RAG_PROMPT) | |
from operator import itemgetter | |
from langchain.schema.output_parser import StrOutputParser | |
from langchain.schema.runnable import RunnablePassthrough | |
retrieval_augmented_qa_chain = ( | |
{"context": itemgetter("question") | qdrant_retriever, "question": itemgetter("question")} | |
| RunnablePassthrough.assign(context=itemgetter("context")) | |
| {"response": rag_prompt | openai_chat_model, "context": itemgetter("context")} | |
) | |
# Chainlit App | |
async def start_chat(): | |
settings = { | |
"model": "gpt-3.5-turbo", | |
"temperature": 0, | |
"max_tokens": 500, | |
"top_p": 1, | |
"frequency_penalty": 0, | |
"presence_penalty": 0, | |
} | |
cl.user_session.set("settings", settings) | |
async def main(message: cl.Message): | |
chainlit_question = message.content | |
#chainlit_question = "What was the total value of 'Cash and cash equivalents' as of December 31, 2023?" | |
response = retrieval_augmented_qa_chain.invoke({"question": chainlit_question}) | |
chainlit_answer = response["response"].content | |
msg = cl.Message(content=chainlit_answer) | |
await msg.send() | |