Spaces:
Sleeping
Sleeping
File size: 1,767 Bytes
001fdb5 30a523b 001fdb5 61ad695 001fdb5 dc52b39 001fdb5 30a523b 61ad695 30a523b 001fdb5 61ad695 001fdb5 05d9035 001fdb5 a2ee5aa 2cbfdf4 f70cd59 001fdb5 30a523b 61ad695 f70cd59 ad1662f f70cd59 001fdb5 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 |
import chromadb
from sentence_transformers import CrossEncoder, SentenceTransformer
import json
def chroma_client_setup():
print("Setup client")
chroma_client = chromadb.Client()
collection = chroma_client.create_collection(
name="food_collection",
metadata={"hnsw:space": "cosine"} # l2 is the default
)
return collection
def load_data():
print("load data")
with open("test_json.json", "r") as f:
data = json.load(f)
return data
def embedding_function(items_to_embed: list[str]):
print("embedding")
sentence_model = SentenceTransformer(
"mixedbread-ai/mxbai-embed-large-v1"
)
embedded_items = sentence_model.encode(
items_to_embed
)
print(len(embedded_items))
print(type(embedded_items[0]))
print(type(embedded_items[0][0]))
return list(embedded_items)
def chroma_upserting(collection, payload:list[dict]):
print('upserting')
print("printing item:")
print(type(item))
embedding = embedding_function([item['doc'] for item in payload])
print(type(embedding))
collection.add(
documents=[item['doc'] for item in payload],
embeddings=[embedding],
#metadatas=item,
ids=[f"id_{idx}" for idx, _ in enumerate(payload)]
)
def search_chroma(collection, query:str):
results = collection.query(
query_embeddings=embedding_function([query]),
n_results=5
)
return results
def reranking_results(query: str, top_k_results: list[str]):
# Load the model, here we use our base sized model
rerank_model = CrossEncoder("mixedbread-ai/mxbai-rerank-xsmall-v1")
reranked_results = rerank_model.rank(query, top_k_results, return_documents=True)
return reranked_results
|