Mikeplockhart commited on
Commit
36d4625
·
verified ·
1 Parent(s): 98c0e4d

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +31 -19
app.py CHANGED
@@ -2,7 +2,7 @@ import gradio as gr
2
  import os
3
  from langchain_community.document_loaders import JSONLoader
4
  from langchain_community.vectorstores import Qdrant
5
- from langchain_community.embeddings import HuggingFaceEmbeddings
6
  from sentence_transformers.cross_encoder import CrossEncoder
7
  from groq import Groq
8
 
@@ -28,7 +28,6 @@ def reranking_results(query, top_k_results, rerank_model):
28
  return reranked_results
29
 
30
 
31
- json_path = "format_food.json"
32
  loader = JSONLoader(
33
  file_path=json_path,
34
  jq_schema='.dishes[].dish',
@@ -36,20 +35,29 @@ loader = JSONLoader(
36
  content_key='doc',
37
  metadata_func=metadata_func
38
  )
 
39
  data = loader.load()
40
 
41
  # Models
42
- model_name = "Snowflake/snowflake-arctic-embed-xs"
43
  # rerank_model = CrossEncoder("mixedbread-ai/mxbai-rerank-xsmall-v1")
44
 
45
  # Embedding
 
 
 
 
 
 
 
 
 
46
  model_kwargs = {"device": "cpu"}
47
  encode_kwargs = {"normalize_embeddings": True}
48
- hf_embedding = HuggingFaceEmbeddings(
49
  model_name=model_name,
50
- encode_kwargs=encode_kwargs,
51
- model_kwargs=model_kwargs,
52
- show_progress=True
53
  )
54
 
55
  qdrant = Qdrant.from_documents(
@@ -64,32 +72,36 @@ def format_to_markdown(response_list):
64
  temp_string = "\n- ".join(response_list)
65
  return temp_string
66
 
67
- def run_query(query):
68
  print("Running Query")
69
  answer = qdrant.similarity_search(query=query, k=10)
70
  title_and_description = f"# Best Choice:\nA {answer[0].metadata['title']}: {answer[0].page_content}"
71
  instructions = format_to_markdown(answer[0].metadata['instructions'])
72
  recipe = f"# Standard Method\n## Cooking time:\n{answer[0].metadata['time']}\n\n## Recipe:\n{instructions}"
73
  print("Returning query")
74
- chat_completion = client.chat.completions.create(
75
- messages=[
76
- {
77
- "role": "user",
78
- "content": f"please write a more detailed recipe for the following recipe:\n{recipe}\n\n please return it in the same format.",
79
- }
80
- ],
81
- model="Llama3-70b-8192",
82
- )
83
- groq_update = "# Groq Update\n"+chat_completion.choices[0].message.content
 
 
 
84
  return title_and_description, recipe, groq_update
85
 
86
  with gr.Blocks() as demo:
87
  gr.Markdown("Start typing below and then click **Run** to see the output.")
88
  inp = gr.Textbox(placeholder="What sort of meal are you after?")
 
89
  title_output = gr.Markdown(label="Title and description")
90
  instructions_output = gr.Markdown(label="Recipe")
91
  updated_recipe = gr.Markdown(label="Updated Recipe")
92
  btn = gr.Button("Run")
93
- btn.click(fn=run_query, inputs=inp, outputs=[title_output, instructions_output, updated_recipe])
94
 
95
  demo.launch()
 
2
  import os
3
  from langchain_community.document_loaders import JSONLoader
4
  from langchain_community.vectorstores import Qdrant
5
+ from langchain_community.embeddings import HuggingFaceEmbeddings, HuggingFaceBgeEmbeddings
6
  from sentence_transformers.cross_encoder import CrossEncoder
7
  from groq import Groq
8
 
 
28
  return reranked_results
29
 
30
 
 
31
  loader = JSONLoader(
32
  file_path=json_path,
33
  jq_schema='.dishes[].dish',
 
35
  content_key='doc',
36
  metadata_func=metadata_func
37
  )
38
+
39
  data = loader.load()
40
 
41
  # Models
42
+ # model_name = "Snowflake/snowflake-arctic-embed-xs"
43
  # rerank_model = CrossEncoder("mixedbread-ai/mxbai-rerank-xsmall-v1")
44
 
45
  # Embedding
46
+ # model_kwargs = {"device": "cpu"}
47
+ # encode_kwargs = {"normalize_embeddings": True}
48
+ # hf_embedding = HuggingFaceEmbeddings(
49
+ # model_name=model_name,
50
+ # encode_kwargs=encode_kwargs,
51
+ # model_kwargs=model_kwargs,
52
+ # show_progress=True
53
+ # )
54
+ model_name = "BAAI/bge-small-en"
55
  model_kwargs = {"device": "cpu"}
56
  encode_kwargs = {"normalize_embeddings": True}
57
+ hf_embedding = HuggingFaceBgeEmbeddings(
58
  model_name=model_name,
59
+ model_kwargs=model_kwargs,
60
+ encode_kwargs=encode_kwargs
 
61
  )
62
 
63
  qdrant = Qdrant.from_documents(
 
72
  temp_string = "\n- ".join(response_list)
73
  return temp_string
74
 
75
+ def run_query(query: str, groq: bool):
76
  print("Running Query")
77
  answer = qdrant.similarity_search(query=query, k=10)
78
  title_and_description = f"# Best Choice:\nA {answer[0].metadata['title']}: {answer[0].page_content}"
79
  instructions = format_to_markdown(answer[0].metadata['instructions'])
80
  recipe = f"# Standard Method\n## Cooking time:\n{answer[0].metadata['time']}\n\n## Recipe:\n{instructions}"
81
  print("Returning query")
82
+ if groq:
83
+ chat_completion = client.chat.completions.create(
84
+ messages=[
85
+ {
86
+ "role": "user",
87
+ "content": f"please write a more detailed recipe for the following recipe:\n{recipe}\n\n please return it in the same format.",
88
+ }
89
+ ],
90
+ model="Llama3-70b-8192",
91
+ )
92
+ groq_update = "# Groq Update\n"+chat_completion.choices[0].message.content
93
+ else:
94
+ groq_update = "# Groq Update \nPlease select the tick box if you need more information."
95
  return title_and_description, recipe, groq_update
96
 
97
  with gr.Blocks() as demo:
98
  gr.Markdown("Start typing below and then click **Run** to see the output.")
99
  inp = gr.Textbox(placeholder="What sort of meal are you after?")
100
+ groq_button = gr.Checkbox(value=False, label="Use Llama for a better recipe?")
101
  title_output = gr.Markdown(label="Title and description")
102
  instructions_output = gr.Markdown(label="Recipe")
103
  updated_recipe = gr.Markdown(label="Updated Recipe")
104
  btn = gr.Button("Run")
105
+ btn.click(fn=run_query, inputs=[inp, groq_button], outputs=[title_output, instructions_output, updated_recipe])
106
 
107
  demo.launch()