Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -5,25 +5,22 @@ import json
|
|
5 |
from qdrant_client import QdrantClient
|
6 |
|
7 |
print("Setup client")
|
8 |
-
#chroma_client = chromadb.Client()
|
9 |
-
#collection = chroma_client.create_collection(
|
10 |
-
|
11 |
-
|
12 |
-
#)
|
13 |
client = QdrantClient(":memory:")
|
14 |
|
15 |
print("load data")
|
16 |
with open("test_json.json", "r") as f:
|
17 |
payload = json.load(f)
|
18 |
|
|
|
19 |
def embedding_function(items_to_embed: list[str]):
|
20 |
print("embedding")
|
21 |
-
sentence_model = SentenceTransformer(
|
22 |
-
|
23 |
-
)
|
24 |
-
embedded_items = sentence_model.encode(
|
25 |
-
items_to_embed
|
26 |
-
)
|
27 |
print(len(embedded_items))
|
28 |
print(type(embedded_items[0]))
|
29 |
print(type(embedded_items[0][0]))
|
@@ -34,58 +31,65 @@ def embedding_function(items_to_embed: list[str]):
|
|
34 |
return embedded_list
|
35 |
|
36 |
|
37 |
-
print(
|
38 |
print("printing item:")
|
39 |
-
embedding = embedding_function([item[
|
40 |
print(type(embedding))
|
41 |
client.add(
|
42 |
collection_name="food",
|
43 |
-
documents=[item[
|
44 |
-
#embeddings=embedding,
|
45 |
-
metadata=[{
|
46 |
-
ids=[idx for idx, _ in enumerate(payload)]
|
47 |
-
|
|
|
48 |
|
49 |
-
def search_chroma(query:str):
|
50 |
results = client.query(
|
51 |
-
#query_embeddings=embedding_function([query]),
|
52 |
collection_name="food",
|
53 |
query_text=query,
|
54 |
-
limit=
|
55 |
)
|
56 |
-
#print(results[0])
|
57 |
-
#print(results[0].QueryResponse.metadata)
|
58 |
-
#instructions = ['\n'.join(item.metadata['payload']['instructions']) for item in results]
|
59 |
-
#text_only= [f"# Title:\n{item.metadata['payload']['title']}\n\n## Description:\n{item.metadata['payload']['doc']}\n\n ## Instructions:\n{instructions}" for item in results]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
60 |
text_only = []
|
61 |
-
for item in
|
62 |
-
instructions = "- "+
|
63 |
-
markdown_text = f"#
|
64 |
text_only.append(markdown_text)
|
65 |
-
print(text_only)
|
66 |
return "\n".join(text_only)
|
67 |
|
|
|
68 |
def reranking_results(query: str, top_k_results: list[str]):
|
69 |
# Load the model, here we use our base sized model
|
70 |
rerank_model = CrossEncoder("mixedbread-ai/mxbai-rerank-xsmall-v1")
|
71 |
reranked_results = rerank_model.rank(query, top_k_results, return_documents=True)
|
72 |
return reranked_results
|
73 |
|
|
|
74 |
def run_query(query_string: str):
|
75 |
meal_string = search_chroma(query_string)
|
76 |
return meal_string
|
77 |
|
|
|
78 |
with gr.Blocks() as meal_search:
|
79 |
gr.Markdown("Start typing below and then click **Run** to see the output.")
|
80 |
with gr.Row():
|
81 |
inp = gr.Textbox(placeholder="What sort of meal are you after?")
|
82 |
out = gr.Markdown()
|
83 |
btn = gr.Button("Run")
|
84 |
-
btn.click(
|
85 |
-
fn=run_query,
|
86 |
-
inputs=inp,
|
87 |
-
outputs=out
|
88 |
-
)
|
89 |
|
90 |
meal_search.launch()
|
91 |
-
|
|
|
5 |
from qdrant_client import QdrantClient
|
6 |
|
7 |
print("Setup client")
|
8 |
+
# chroma_client = chromadb.Client()
|
9 |
+
# collection = chroma_client.create_collection(
|
10 |
+
# name="food_collection",
|
11 |
+
# metadata={"hnsw:space": "cosine"} # l2 is the default
|
12 |
+
# )
|
13 |
client = QdrantClient(":memory:")
|
14 |
|
15 |
print("load data")
|
16 |
with open("test_json.json", "r") as f:
|
17 |
payload = json.load(f)
|
18 |
|
19 |
+
|
20 |
def embedding_function(items_to_embed: list[str]):
|
21 |
print("embedding")
|
22 |
+
sentence_model = SentenceTransformer("mixedbread-ai/mxbai-embed-large-v1")
|
23 |
+
embedded_items = sentence_model.encode(items_to_embed)
|
|
|
|
|
|
|
|
|
24 |
print(len(embedded_items))
|
25 |
print(type(embedded_items[0]))
|
26 |
print(type(embedded_items[0][0]))
|
|
|
31 |
return embedded_list
|
32 |
|
33 |
|
34 |
+
print("upserting")
|
35 |
print("printing item:")
|
36 |
+
embedding = embedding_function([item["doc"] for item in payload])
|
37 |
print(type(embedding))
|
38 |
client.add(
|
39 |
collection_name="food",
|
40 |
+
documents=[item["doc"] for item in payload],
|
41 |
+
# embeddings=embedding,
|
42 |
+
metadata=[{"payload": item} for item in payload],
|
43 |
+
ids=[idx for idx, _ in enumerate(payload)],
|
44 |
+
)
|
45 |
+
|
46 |
|
47 |
+
def search_chroma(query: str):
|
48 |
results = client.query(
|
49 |
+
# query_embeddings=embedding_function([query]),
|
50 |
collection_name="food",
|
51 |
query_text=query,
|
52 |
+
limit=5,
|
53 |
)
|
54 |
+
# print(results[0])
|
55 |
+
# print(results[0].QueryResponse.metadata)
|
56 |
+
# instructions = ['\n'.join(item.metadata['payload']['instructions']) for item in results]
|
57 |
+
# text_only= [f"# Title:\n{item.metadata['payload']['title']}\n\n## Description:\n{item.metadata['payload']['doc']}\n\n ## Instructions:\n{instructions}" for item in results]
|
58 |
+
top_k = [item.document for item in results]
|
59 |
+
reranked = reranking_results(query, top_k)
|
60 |
+
|
61 |
+
ordered_results = []
|
62 |
+
for item in reranked:
|
63 |
+
for result in results:
|
64 |
+
if item["text"] == result.document:
|
65 |
+
ordered_results.append(result)
|
66 |
+
|
67 |
text_only = []
|
68 |
+
for item in ordered_results:
|
69 |
+
instructions = "- " + "<br>- ".join(item.metadata["payload"]["instructions"])
|
70 |
+
markdown_text = f"# Dish: {item.metadata['payload']['title']}\n\n## Description:\n{item.metadata['payload']['doc']}\n\n ## Instructions:\n{instructions}\n\n### Score: {item.score}\n"
|
71 |
text_only.append(markdown_text)
|
|
|
72 |
return "\n".join(text_only)
|
73 |
|
74 |
+
|
75 |
def reranking_results(query: str, top_k_results: list[str]):
|
76 |
# Load the model, here we use our base sized model
|
77 |
rerank_model = CrossEncoder("mixedbread-ai/mxbai-rerank-xsmall-v1")
|
78 |
reranked_results = rerank_model.rank(query, top_k_results, return_documents=True)
|
79 |
return reranked_results
|
80 |
|
81 |
+
|
82 |
def run_query(query_string: str):
|
83 |
meal_string = search_chroma(query_string)
|
84 |
return meal_string
|
85 |
|
86 |
+
|
87 |
with gr.Blocks() as meal_search:
|
88 |
gr.Markdown("Start typing below and then click **Run** to see the output.")
|
89 |
with gr.Row():
|
90 |
inp = gr.Textbox(placeholder="What sort of meal are you after?")
|
91 |
out = gr.Markdown()
|
92 |
btn = gr.Button("Run")
|
93 |
+
btn.click(fn=run_query, inputs=inp, outputs=out)
|
|
|
|
|
|
|
|
|
94 |
|
95 |
meal_search.launch()
|
|