MingGatsby's picture
Update app.py
2046f76
raw
history blame
12.2 kB
# Import required libraries
import os
import io
import torch
# import shutil
import numpy as np
import streamlit as st
# Import utility and custom functions
from PIL import Image
from Util.DICOM import DICOM_Utils
from Util.Custom_Model import Build_Custom_Model, reshape_transform
# Import additional MONAI and PyTorch Grad-CAM utilities
from monai.config import print_config
from monai.utils import set_determinism
from monai.networks.nets import SEResNet50
from monai.transforms import (
Activations,
EnsureChannelFirst,
AsDiscrete,
Compose,
LoadImage,
RandFlip,
RandRotate,
RandZoom,
ScaleIntensity,
AsChannelFirst,
AddChannel,
RandSpatialCrop,
ScaleIntensityRangePercentiles,
Resize,
)
from pytorch_grad_cam import GradCAM
from pytorch_grad_cam.utils.image import show_cam_on_image
from pytorch_grad_cam.utils.model_targets import ClassifierOutputTarget
# (Int) Random seed
SEED = 0
# (Int) Model parameters
NUM_CLASSES = 1
# (String) CT Model directory
CT_MODEL_DIRECTORY = "models/CLOTS/CT"
# (String) MRI Model directory
MRI_MODEL_DIRECTORY = "models/CLOTS/MRI"
# (Boolean) Use custom model
CUSTOM_MODEL_FLAG = True
# (List[int]) Image size
SPATIAL_SIZE = [224, 224]
# (String) CT Model file name
CT_MODEL_FILE_NAME = "best_metric_model.pth"
# (String) MRI Model file name
MRI_MODEL_FILE_NAME = "best_metric_model.pth"
# (Boolean) List model modules
LIST_MODEL_MODULES = False
# (String) Model name
CT_MODEL_NAME = "swin_base_patch4_window7_224"
# (String) Model name
MRI_MODEL_NAME = "swin_base_patch4_window7_224"
# (Float) Model inference threshold
CT_INFERENCE_THRESHOLD = 0.5
# (Float) Model inference threshold
MRI_INFERENCE_THRESHOLD = 0.5
# (Int) Display CAM Class ID
CAM_CLASS_ID = 0
# (Int) Window Center for image display
DEFAULT_CT_WINDOW_CENTER = 40
# (Int) Window Width for image display
DEFAULT_CT_WINDOW_WIDTH = 100
# (Int) Window Center for image display
DEFAULT_MRI_WINDOW_CENTER = 400
# (Int) Window Width for image display
DEFAULT_MRI_WINDOW_WIDTH = 1000
# (Int) Minimum value for Window Center
WINDOW_CENTER_MIN = -600
# (Int) Maximum value for Window Center
WINDOW_CENTER_MAX = 1000
# (Int) Minimum value for Window Width
WINDOW_WIDTH_MIN = 1
# (Int) Maximum value for Window Width
WINDOW_WIDTH_MAX = 3000
# Evaluation Transforms
eval_transforms = Compose(
[
# LoadImage(image_only=True),
AsChannelFirst(),
ScaleIntensityRangePercentiles(lower=20, upper=80, b_min=0.0, b_max=1.0, clip=False, relative=True),
Resize(spatial_size=SPATIAL_SIZE)
]
)
# CAM Transforms
cam_transforms = Compose(
[
# LoadImage(image_only=True),
AsChannelFirst(),
Resize(spatial_size=SPATIAL_SIZE)
]
)
# Original Transforms
original_transforms = Compose(
[
# LoadImage(image_only=True),
AsChannelFirst()
]
)
# Function to convert PIL Image to byte stream in PNG format for downloading
def image_to_bytes(image):
byte_stream = io.BytesIO()
image.save(byte_stream, format='PNG')
return byte_stream.getvalue()
# if os.path.exists("tempDir"):
# shutil.rmtree(os.path.join("tempDir"))
# def create_dir(dirname: str):
# if not os.path.exists(dirname):
# os.makedirs(dirname, exist_ok=True)
# create_dir("CT_tempDir")
# create_dir("MRI_tempDir")
# # Get the current working directory
# current_directory = os.getcwd()
set_determinism(seed=SEED)
torch.manual_seed(SEED)
# Parameters
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
def load_model(root_dir, model_name, model_file_name):
if CUSTOM_MODEL_FLAG:
model = Build_Custom_Model(model_name, NUM_CLASSES, pretrained=False).to(device)
else:
model = SEResNet50(spatial_dims=2, in_channels=1, num_classes=NUM_CLASSES).to(device)
model.load_state_dict(torch.load(os.path.join(root_dir, model_file_name), map_location=device))
model.eval()
return model
ct_model = load_model(CT_MODEL_DIRECTORY, CT_MODEL_NAME, CT_MODEL_FILE_NAME)
mri_model = load_model(MRI_MODEL_DIRECTORY, MRI_MODEL_NAME, MRI_MODEL_FILE_NAME)
if LIST_MODEL_MODULES:
for ct_name, _ in ct_model.named_modules():
print(ct_name)
for mri_name, _ in mri_model.named_modules():
print(mri_name)
# Initialize Streamlit
st.title("Analyze")
# Use Streamlit's number_input to adjust WINDOW_CENTER and WINDOW_WIDTH
st.sidebar.header("Windowing Parameters for DICOM")
MRI_WINDOW_CENTER = st.sidebar.number_input("MRI Window Center", min_value=WINDOW_CENTER_MIN, max_value=WINDOW_CENTER_MAX, value=DEFAULT_MRI_WINDOW_CENTER, step=1)
MRI_WINDOW_WIDTH = st.sidebar.number_input("MRI Window Width", min_value=WINDOW_WIDTH_MIN, max_value=WINDOW_WIDTH_MAX, value=DEFAULT_MRI_WINDOW_WIDTH, step=1)
CT_WINDOW_CENTER = st.sidebar.number_input("CT Window Center", min_value=WINDOW_CENTER_MIN, max_value=WINDOW_CENTER_MAX, value=DEFAULT_CT_WINDOW_CENTER, step=1)
CT_WINDOW_WIDTH = st.sidebar.number_input("CT Window Width", min_value=WINDOW_WIDTH_MIN, max_value=WINDOW_WIDTH_MAX, value=DEFAULT_CT_WINDOW_WIDTH, step=1)
uploaded_mri_file = st.file_uploader("Upload a candidate MRI DICOM", type=["dcm"])
if uploaded_mri_file is not None:
# To check file details
file_details = {"FileName": uploaded_mri_file.name, "FileType": uploaded_mri_file.type, "FileSize": uploaded_mri_file.size}
st.write(file_details)
import pydicom
# Read DICOM file into NumPy array
dicom_data = pydicom.dcmread(uploaded_mri_file)
dicom_array = dicom_data.pixel_array
# Convert the data type to float32
dicom_array = dicom_array.astype(np.float32)
# Then add a channel dimension
dicom_array = dicom_array[:, :, np.newaxis]
# Check the shape and dtype of dicom_array
st.write(f"Shape of dicom_array: {dicom_array.shape}")
st.write(f"Data type of dicom_array: {dicom_array.dtype}")
transformed_array = eval_transforms(dicom_array)
# Convert to PyTorch tensor and move to device
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
image_tensor = transformed_array.clone().detach().unsqueeze(0).to(device)
# Predict
with torch.no_grad():
outputs = mri_model(image_tensor).sigmoid().to("cpu").numpy()
prob = outputs[0][0]
CLOTS_CLASSIFICATION = False
if(prob >= MRI_INFERENCE_THRESHOLD):
CLOTS_CLASSIFICATION=True
st.header("MRI Classification")
st.subheader(f"Ischaemic Stroke : {CLOTS_CLASSIFICATION}")
st.subheader(f"Confidence : {prob * 100:.1f}%")
# Load the original DICOM image for download
download_image_tensor = original_transforms(dicom_array).unsqueeze(0).to(device)
download_image = download_image_tensor.squeeze()
# Transform the download image and apply windowing
transformed_download_image = DICOM_Utils.transform_image_for_display(download_image)
windowed_download_image = DICOM_Utils.apply_windowing(transformed_download_image, MRI_WINDOW_CENTER, MRI_WINDOW_WIDTH)
# Streamlit button to trigger image download
image_data = image_to_bytes(Image.fromarray(windowed_download_image))
st.download_button(
label="Download MRI Image",
data=image_data,
file_name="downloaded_mri_image.png",
mime="image/png"
)
# Load the original DICOM image for display
display_image_tensor = cam_transforms(dicom_array).unsqueeze(0).to(device)
display_image = display_image_tensor.squeeze()
# Transform the image and apply windowing
transformed_image = DICOM_Utils.transform_image_for_display(display_image)
windowed_image = DICOM_Utils.apply_windowing(transformed_image, MRI_WINDOW_CENTER, MRI_WINDOW_WIDTH)
st.image(Image.fromarray(windowed_image), caption="Original MRI Visualization", use_column_width=True)
# Expand to three channels
windowed_image = np.expand_dims(windowed_image, axis=2)
windowed_image = np.tile(windowed_image, [1, 1, 3])
# Ensure both are of float32 type
windowed_image = windowed_image.astype(np.float32)
# Normalize to [0, 1] range
windowed_image = np.float32(windowed_image) / 255
# Build the CAM (Class Activation Map)
target_layers = [mri_model.model.norm]
cam = GradCAM(model=mri_model, target_layers=target_layers, reshape_transform=reshape_transform, use_cuda=True)
grayscale_cam = cam(input_tensor=image_tensor, targets=[ClassifierOutputTarget(CAM_CLASS_ID)])
grayscale_cam = grayscale_cam[0, :]
# Now you can safely call the show_cam_on_image function
visualization = show_cam_on_image(windowed_image, grayscale_cam, use_rgb=True)
st.image(Image.fromarray(visualization), caption="CAM MRI Visualization", use_column_width=True)
# uploaded_ct_file = st.file_uploader("Upload a candidate CT DICOM", type=["dcm"])
# if uploaded_ct_file is not None:
# # Save the uploaded file to a temporary location
# ct_temp_path = os.path.join("CT_tempDir", uploaded_ct_file.name)
# with open(ct_temp_path, "wb") as f:
# f.write(uploaded_ct_file.getbuffer())
# full_ct_temp_path = current_directory +"\\"+ ct_temp_path
# # Apply evaluation transforms to the DICOM image for model prediction
# image_tensor = eval_transforms(full_ct_temp_path).unsqueeze(0).to(device)
# # Predict
# with torch.no_grad():
# outputs = ct_model(image_tensor).sigmoid().to("cpu").numpy()
# prob = outputs[0][0]
# CLOTS_CLASSIFICATION = False
# if(prob >= CT_INFERENCE_THRESHOLD):
# CLOTS_CLASSIFICATION=True
# st.header("CT Classification")
# st.subheader(f"Ischaemic Stroke : {CLOTS_CLASSIFICATION}")
# st.subheader(f"Confidence : {prob * 100:.1f}%")
# # Load the original DICOM image for download
# download_image_tensor = original_transforms(full_ct_temp_path).unsqueeze(0).to(device)
# download_image = download_image_tensor.squeeze()
# # Transform the download image and apply windowing
# transformed_download_image = DICOM_Utils.transform_image_for_display(download_image)
# windowed_download_image = DICOM_Utils.apply_windowing(transformed_download_image, CT_WINDOW_CENTER, CT_WINDOW_WIDTH)
# # Streamlit button to trigger image download
# image_data = image_to_bytes(Image.fromarray(windowed_download_image))
# st.download_button(
# label="Download CT Image",
# data=image_data,
# file_name="downloaded_ct_image.png",
# mime="image/png"
# )
# # Load the original DICOM image for display
# display_image_tensor = cam_transforms(full_ct_temp_path).unsqueeze(0).to(device)
# display_image = display_image_tensor.squeeze()
# # Transform the image and apply windowing
# transformed_image = DICOM_Utils.transform_image_for_display(display_image)
# windowed_image = DICOM_Utils.apply_windowing(transformed_image, CT_WINDOW_CENTER, CT_WINDOW_WIDTH)
# st.image(Image.fromarray(windowed_image), caption="Original CT Visualization", use_column_width=True)
# # Expand to three channels
# windowed_image = np.expand_dims(windowed_image, axis=2)
# windowed_image = np.tile(windowed_image, [1, 1, 3])
# # Ensure both are of float32 type
# windowed_image = windowed_image.astype(np.float32)
# # Normalize to [0, 1] range
# windowed_image = np.float32(windowed_image) / 255
# # Build the CAM (Class Activation Map)
# target_layers = [ct_model.model.norm]
# cam = GradCAM(model=ct_model, target_layers=target_layers, reshape_transform=reshape_transform, use_cuda=True)
# grayscale_cam = cam(input_tensor=image_tensor, targets=[ClassifierOutputTarget(CAM_CLASS_ID)])
# grayscale_cam = grayscale_cam[0, :]
# # Now you can safely call the show_cam_on_image function
# visualization = show_cam_on_image(windowed_image, grayscale_cam, use_rgb=True)
# st.image(Image.fromarray(visualization), caption="CAM CT Visualization", use_column_width=True)