MingGatsby
commited on
Commit
•
a56d0aa
1
Parent(s):
9c123f3
Update app.py
Browse files
app.py
CHANGED
@@ -148,6 +148,8 @@ def load_model(root_dir, model_name, model_file_name):
|
|
148 |
model = Build_Custom_Model(model_name, NUM_CLASSES, pretrained=False).to(device)
|
149 |
else:
|
150 |
model = SEResNet50(spatial_dims=2, in_channels=1, num_classes=NUM_CLASSES).to(device)
|
|
|
|
|
151 |
model.load_state_dict(torch.load(os.path.join(root_dir, model_file_name), map_location=device))
|
152 |
model.eval()
|
153 |
return model
|
@@ -177,21 +179,8 @@ if uploaded_ct_file is not None:
|
|
177 |
with tempfile.NamedTemporaryFile(delete=False, suffix=".dcm") as temp_file:
|
178 |
temp_file.write(uploaded_ct_file.getvalue())
|
179 |
|
180 |
-
#
|
181 |
-
|
182 |
-
# Check if the temporary DICOM file is accessible and properly written
|
183 |
-
if not os.path.exists(temp_file.name) or os.path.getsize(temp_file.name) == 0:
|
184 |
-
print("Debugging: Temporary DICOM file is either missing or empty.")
|
185 |
-
|
186 |
-
# Attempt to apply the evaluation transforms to the DICOM image
|
187 |
-
image_tensor = eval_transforms(temp_file.name).unsqueeze(0).to(device)
|
188 |
-
|
189 |
-
except Exception as e:
|
190 |
-
print(f"Debugging: Exception caught while applying transform: {e}")
|
191 |
-
raise
|
192 |
-
|
193 |
-
# # Apply evaluation transforms to the DICOM image for model prediction
|
194 |
-
# image_tensor = eval_transforms(temp_file.name).unsqueeze(0).to(device)
|
195 |
|
196 |
# Predict
|
197 |
with torch.no_grad():
|
|
|
148 |
model = Build_Custom_Model(model_name, NUM_CLASSES, pretrained=False).to(device)
|
149 |
else:
|
150 |
model = SEResNet50(spatial_dims=2, in_channels=1, num_classes=NUM_CLASSES).to(device)
|
151 |
+
print(os.path.join(root_dir, model_file_name))
|
152 |
+
print("=================================")
|
153 |
model.load_state_dict(torch.load(os.path.join(root_dir, model_file_name), map_location=device))
|
154 |
model.eval()
|
155 |
return model
|
|
|
179 |
with tempfile.NamedTemporaryFile(delete=False, suffix=".dcm") as temp_file:
|
180 |
temp_file.write(uploaded_ct_file.getvalue())
|
181 |
|
182 |
+
# Apply evaluation transforms to the DICOM image for model prediction
|
183 |
+
image_tensor = eval_transforms(temp_file.name).unsqueeze(0).to(device)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
184 |
|
185 |
# Predict
|
186 |
with torch.no_grad():
|