Spaces:
Runtime error
Runtime error
File size: 10,035 Bytes
e43a382 a698138 e43a382 a698138 e43a382 f845bf6 e43a382 f845bf6 e43a382 a698138 e43a382 0e30a9a f845bf6 0e30a9a f845bf6 e43a382 0e30a9a e43a382 0e30a9a f845bf6 0e30a9a f845bf6 e43a382 a698138 e43a382 a698138 e43a382 f845bf6 a698138 f845bf6 a698138 f845bf6 e43a382 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 |
import os
import gradio as gr
from PIL import Image
import torch
import matplotlib.pyplot as plt
import imageio
import numpy as np
import math
import argparse
import tempfile
import torch
import base64
import io
import os
from typing import Union
from shap_e.diffusion.sample import sample_latents
from shap_e.diffusion.gaussian_diffusion import diffusion_from_config
from shap_e.models.download import load_model, load_config
from shap_e.util.notebooks import create_pan_cameras, decode_latent_images
from shap_e.models.nn.camera import DifferentiableCameraBatch, DifferentiableProjectiveCamera
from shap_e.models.transmitter.base import Transmitter, VectorDecoder
from shap_e.util.collections import AttrDict
import trimesh
state = ""
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
css = '''
.instruction{position: absolute; top: 0;right: 0;margin-top: 0px !important}
.arrow{position: absolute;top: 0;right: -110px;margin-top: -8px !important}
#component-4, #component-3, #component-10{min-height: 0}
'''
def set_state(s):
print(s)
global state
state = s
def get_state():
return state
@torch.no_grad()
def decode_latent_images_foo(
xm: Union[Transmitter, VectorDecoder],
latent: torch.Tensor,
cameras: DifferentiableCameraBatch,
rendering_mode: str = "stf",
):
decoded = xm.renderer.render_views(
AttrDict(cameras=cameras),
params=(xm.encoder if isinstance(xm, Transmitter) else xm).bottleneck_to_params(
latent[None]
),
options=AttrDict(rendering_mode=rendering_mode, render_with_direction=False),
)
return decoded
def to_video(frames: list[Image.Image], fps: int = 5) -> str:
out_file = tempfile.NamedTemporaryFile(suffix='.mp4', delete=False)
writer = imageio.get_writer(out_file.name, format='FFMPEG', fps=fps)
for frame in frames:
writer.append_data(np.asarray(frame))
writer.close()
return out_file.name
def generate_3D(input, grid_size=64):
set_state('Entered generate function...')
# if input is a string, it's a text prompt
xm = load_model('transmitter', device=device)
diffusion = diffusion_from_config(load_config('diffusion'))
batch_size = 4
if isinstance(input, np.ndarray):
input = Image.fromarray(input)
if isinstance(input, Image.Image):
input = prepare_img(input)
model = load_model('image300M', device=device)
guidance_scale = 3.0
model_kwargs = dict(images=[input] * batch_size)
else:
model = load_model('text300M', device=device)
guidance_scale = 15.0
model_kwargs = dict(texts=[input] * batch_size)
print(input)
latents = sample_latents(
batch_size=batch_size,
model=model,
diffusion=diffusion,
guidance_scale=guidance_scale,
model_kwargs=model_kwargs,
progress=True,
clip_denoised=True,
use_fp16=True,
use_karras=True,
karras_steps=64,
sigma_min=1e-3,
sigma_max=160,
s_churn=0,
)
render_mode = 'stf' # you can change this to 'stf'
size = grid_size # this is the size of the renders; higher values take longer to render.
cameras = create_pan_cameras(size, device)
x=decode_latent_images_foo(xm, latents[0], cameras, rendering_mode=render_mode)
mesh=x['meshes'][0]
rm=x['raw_meshes'][0]
rm.vertex_channels["R"]=mesh.vertex_colors[:,0]
rm.vertex_channels["G"]=mesh.vertex_colors[:,1]
rm.vertex_channels["B"]=mesh.vertex_colors[:,2]
tm=rm.tri_mesh()
with open("/tmp/mesh.ply",'wb') as f:
tm.write_ply(f)
set_state('Converting to point cloud...')
# pc = sampler.output_to_point_clouds(samples)[0]
set_state('Converting to mesh...')
# save_ply(pc, 'output/mesh.ply', grid_size)
set_state('')
images = decode_latent_images(xm, latents[0], cameras, rendering_mode=render_mode)
return ply_to_glb('/tmp/mesh.ply', '/tmp/mesh.glb'), to_video(images), gr.update(value=['/tmp/mesh.glb', '/tmp/mesh.ply'], visible=True)
def prepare_img(img):
w, h = img.size
if w > h:
img = img.crop((w - h) / 2, 0, w - (w - h) / 2, h)
else:
img = img.crop((0, (h - w) / 2, w, h - (h - w) / 2))
# resize to 256x256
img = img.resize((256, 256))
return img
def ply_to_glb(ply_file, glb_file):
mesh = trimesh.load(ply_file)
# Save the mesh as a glb file using Trimesh
mesh.export(glb_file, file_type='glb')
return glb_file
# def save_ply(pc, file_name, grid_size):
# set_state('Creating SDF model...')
# sdf_name = 'sdf'
# sdf_model = model_from_config(MODEL_CONFIGS[sdf_name], device)
# sdf_model.eval()
# set_state('Loading SDF model...')
# sdf_model.load_state_dict(load_checkpoint(sdf_name, device))
# # Produce a mesh (with vertex colors)
# mesh = marching_cubes_mesh(
# pc=pc,
# model=sdf_model,
# batch_size=4096,
# grid_size=grid_size, # increase to 128 for resolution used in evals
# progress=True,
# )
# # Write the mesh to a PLY file to import into some other program.
# with open(file_name, 'wb') as f:
# mesh.write_ply(f)
block = gr.Blocks().queue(max_size=250, concurrency_count=6)
with block:
with gr.Box():
if(not torch.cuda.is_available()):
top_description = gr.HTML(f'''
<div style="text-align: center; max-width: 650px; margin: 0 auto;">
<div>
<img class="logo" src="file/images/mirage.png" alt="Mirage Logo"
style="margin: auto; max-width: 7rem;">
<br />
<h1 style="font-weight: 900; font-size: 2.5rem;">
Shap-E Web UI
</h1>
</div>
<h3 style="font-weight: 900; font-size: 1.5rem;">
If the Queue is Too Long, <a href="https://app.mirageml.com/generate" style="text-decoration: underline" target="_blank">Try it on Mirage</a>!
</h3>
<br />
<p style="margin-bottom: 10px; font-size: 94%">
Generate 3D Assets in 1 minute with a prompt or image!
Based on the <a href="https://github.com/openai/shap-e">Shap-E</a> implementation
</p>
<br />
<p>There's only one step left before you can train your model: <a href="https://huggingface.co/spaces/{os.environ['SPACE_ID']}/settings" style="text-decoration: underline" target="_blank">attribute a <b>T4 GPU</b> to it (via the Settings tab)</a> and run the training below. Other GPUs are not compatible for now. You will be billed by the minute from when you activate the GPU until when it is turned it off.</p>
</div>
''')
else:
top_description = gr.HTML(f'''
<div style="text-align: center; max-width: 650px; margin: 0 auto;">
<div>
<img class="logo" src="file/images/mirage.png" alt="Mirage Logo"
style="margin: auto; max-width: 7rem;">
<br />
<h1 style="font-weight: 900; font-size: 2.5rem;">
Shap-E Web UI
</h1>
</div>
<h3 style="font-weight: 900; font-size: 1.5rem;">
If the Queue is Too Long, <a href="https://app.mirageml.com/generate" style="text-decoration: underline" target="_blank">Try it on Mirage</a>!
</h3>
<br />
<p style="margin-bottom: 10px; font-size: 94%">
Generate 3D Assets in 1 minute with a prompt or image!
Based on the <a href="https://github.com/openai/shap-e">Shap-E</a> implementation
</p>
</div>
''')
with gr.Row():
with gr.Column():
with gr.Tab("Text to 3D"):
gr.Markdown("Uses Stable Diffusion to create an image from the prompt.")
prompt = gr.Textbox(label="Prompt", placeholder="A HD photo of a Corgi")
text_button = gr.Button(label="Generate")
with gr.Tab("Image to 3D"):
gr.Markdown("Best results with images of objects on an empty background.")
input_image = gr.Image(label="Image")
img_button = gr.Button(label="Generate")
# with gr.Accordion("Advanced options", open=False):
# model = gr.Radio(["base40M", "base300M", "base1B"], label="Model", value="base1B")
# scale = gr.Slider(
# label="Guidance Scale", minimum=1.0, maximum=10.0, value=3.0, step=0.1
# )
with gr.Column():
model_gif = gr.Model3D(label="3D Model GIF")
# btn_pc_to_obj = gr.Button(value="Convert to OBJ", visible=False)
model_3d = gr.Model3D(value=None)
file_out = gr.File(label="Files", visible=False)
if torch.cuda.is_available():
gr.Examples(
examples=[
["a shark"],
["an avocado"],
],
inputs=[prompt],
outputs=[model_3d, model_gif, file_out],
fn=generate_3D,
cache_examples=True
)
gr.Examples(
examples=[
["images/pumpkin.png"],
["images/fantasy_world.png"],
],
inputs=[input_image],
outputs=[model_3d, model_gif, file_out],
fn=generate_3D,
cache_examples=True
)
img_button.click(fn=generate_3D, inputs=[input_image], outputs=[model_3d, model_gif, file_out])
text_button.click(fn=generate_3D, inputs=[prompt], outputs=[model_3d, model_gif, file_out])
block.launch(show_api=False)
|