SUI-svc-3.0 / app.py
Miuzarte's picture
Upload 40 files
4e9cd67
raw
history blame
2.81 kB
import io
import gradio as gr
import librosa
import numpy as np
import soundfile
import torch
from inference.infer_tool import Svc
import logging
logging.getLogger('numba').setLevel(logging.WARNING)
model_name = "logs/48k/suiji.pth"
config_name = "configs/suiji.json"
svc_model = Svc(model_name, config_name)
sid_map = {
"岁己(本音)": "suiji"
}
def vc_fn(sid, input_audio, vc_transform):
if input_audio is None:
return "You need to upload an audio", None
sampling_rate, audio = input_audio
# print(audio.shape,sampling_rate)
duration = audio.shape[0] / sampling_rate
audio = (audio / np.iinfo(audio.dtype).max).astype(np.float32)
if len(audio.shape) > 1:
audio = librosa.to_mono(audio.transpose(1, 0))
if sampling_rate != 16000:
audio = librosa.resample(audio, orig_sr=sampling_rate, target_sr=16000)
print(audio.shape)
out_wav_path = io.BytesIO()
soundfile.write(out_wav_path, audio, 16000, format="wav")
out_wav_path.seek(0)
sid = sid_map[sid]
out_audio, out_sr = svc_model.infer(sid, vc_transform, out_wav_path)
_audio = out_audio.cpu().numpy()
return "Success", (48000, _audio)
app = gr.Blocks()
with app:
with gr.Tabs():
with gr.TabItem("Basic"):
gr.Markdown(value="""
#### 这是 sovits 3.0 48kHz AI岁己(本音)歌声(划重点)音色转换的在线demo
#### 目前模型训练状态:700000steps / 640epochs
#### 如果要训练自己的数据请访问:[Github仓库](https://github.com/innnky/so-vits-svc)、[教程《svc相关》](https://www.yuque.com/jiuwei-nui3d/qng6eg)
#### 如果要在本地推理请使用 git lfs clone 该仓库,安装 requirements.txt 后运行 app.py 即可
#### 更建议参考仓库[README.md上的推理部分](https://github.com/innnky/so-vits-svc#%E6%8E%A8%E7%90%86),在本地使用 inference_main.py 处理
#### 3060Ti 8G可推理一条20(建议) - 30s的音频,过长音频可分割后批量处理
""")
sid = gr.Dropdown(label="音色", choices=["岁己(本音)"], value="岁己(本音)")
vc_input3 = gr.Audio(label="输入音频(长度请控制在25s左右,过长可能会爆内存)")
vc_transform = gr.Number(label="变调(整数,可以正负,半音数量,升高八度就是12)", value=0)
vc_submit = gr.Button("转换", variant="primary")
vc_output1 = gr.Textbox(label="输出日志")
vc_output2 = gr.Audio(label="输出音频")
vc_submit.click(vc_fn, [sid, vc_input3, vc_transform], [vc_output1, vc_output2])
app.launch()