Spaces:
Sleeping
Sleeping
import streamlit as st | |
from dotenv import load_dotenv | |
from PyPDF2 import PdfReader | |
import langchain | |
from htmlTemplates import css,bot_template,user_template,url,aiLogoUrl | |
cohere_api_key="gf0VDS934ffUjm9XYGR7WBDyqVL9RPWI6CINzLje" | |
def get_pdf_text(pdf_docs): | |
text = "" | |
for pdf in pdf_docs: | |
pdfReader = PdfReader(pdf) | |
for Page in pdfReader.pages: | |
text += Page.extract_text() | |
return text | |
def get_text_chunks(text): | |
text_splitter = langchain.text_splitter.CharacterTextSplitter( | |
separator="\n", | |
chunk_size=1000, | |
chunk_overlap=200, | |
length_function=len | |
) | |
chunks = text_splitter.split_text(text) | |
return chunks | |
def get_vectorstore(text_chunks): | |
embeddings = langchain.embeddings.CohereEmbeddings() | |
vectorstore = langchain.vectorstores.FAISS.from_texts(texts=text_chunks,embedding=embeddings) | |
return vectorstore | |
def get_conversation_chain(vectorstore): | |
llm = langchain.llms.Cohere() | |
memory = langchain.memory.ConversationBufferMemory(memory_key = 'chat_history',return_messages=True) | |
conversation_chain = langchain.chains.ConversationalRetrievalChain.from_llm( | |
llm = llm, | |
retriever=vectorstore.as_retriever(), | |
memory=memory | |
) | |
return conversation_chain | |
def handle_userinput(user_question): | |
response = st.session_state.conversation({'question':user_question}) | |
st.session_state.chat_history = response['chat_history'] | |
for i,message in enumerate(st.session_state.chat_history): | |
if i % 2 == 0: | |
st.write(user_template.replace("{{MSG}}",message.content), unsafe_allow_html=True) | |
else: | |
st.write(bot_template.replace("{{MSG}}", message.content), unsafe_allow_html=True) | |
def main(): | |
load_dotenv() | |
st.set_page_config(page_title="Chat with multiple pdfs", page_icon=":books:") | |
st.write(css,unsafe_allow_html=True) | |
st.markdown( | |
'<div class="logo-container"><img class="logo" src="' + url + '" /><img class="logo" src="' + aiLogoUrl + '" /></div>', | |
unsafe_allow_html=True) | |
if "conversation" not in st.session_state: | |
st.session_state.conversation = None | |
if "chat_history" not in st.session_state: | |
st.session_state.chat_history = None | |
st.header("Chat with multiple pdfs :books:") | |
user_question = st.text_input("Ask a question about your documents:") | |
if user_question: | |
handle_userinput(user_question) | |
with st.sidebar: | |
st.subheader("Your documents") | |
pdf_docs=st.file_uploader("Upload your files here and click process",accept_multiple_files=True) | |
if st.button("Process"): | |
with st.spinner("Processing"): | |
# get pdf text | |
raw_text = get_pdf_text(pdf_docs) | |
# get the text chunks | |
text_chunks = get_text_chunks(raw_text) | |
# create vector store | |
vectorstore = get_vectorstore(text_chunks) | |
# create conversation chai | |
st.session_state.conversation = get_conversation_chain(vectorstore) | |
if __name__=='__main__': | |
main() |