Moghazy's picture
Update app.py
57b5ed0
import streamlit as st
from dotenv import load_dotenv
from PyPDF2 import PdfReader
import langchain
from htmlTemplates import css,bot_template,user_template,url,aiLogoUrl
cohere_api_key="gf0VDS934ffUjm9XYGR7WBDyqVL9RPWI6CINzLje"
def get_pdf_text(pdf_docs):
text = ""
for pdf in pdf_docs:
pdfReader = PdfReader(pdf)
for Page in pdfReader.pages:
text += Page.extract_text()
return text
def get_text_chunks(text):
text_splitter = langchain.text_splitter.CharacterTextSplitter(
separator="\n",
chunk_size=1000,
chunk_overlap=200,
length_function=len
)
chunks = text_splitter.split_text(text)
return chunks
def get_vectorstore(text_chunks):
embeddings = langchain.embeddings.CohereEmbeddings()
vectorstore = langchain.vectorstores.FAISS.from_texts(texts=text_chunks,embedding=embeddings)
return vectorstore
def get_conversation_chain(vectorstore):
llm = langchain.llms.Cohere()
memory = langchain.memory.ConversationBufferMemory(memory_key = 'chat_history',return_messages=True)
conversation_chain = langchain.chains.ConversationalRetrievalChain.from_llm(
llm = llm,
retriever=vectorstore.as_retriever(),
memory=memory
)
return conversation_chain
def handle_userinput(user_question):
response = st.session_state.conversation({'question':user_question})
st.session_state.chat_history = response['chat_history']
for i,message in enumerate(st.session_state.chat_history):
if i % 2 == 0:
st.write(user_template.replace("{{MSG}}",message.content), unsafe_allow_html=True)
else:
st.write(bot_template.replace("{{MSG}}", message.content), unsafe_allow_html=True)
def main():
load_dotenv()
st.set_page_config(page_title="Chat with multiple pdfs", page_icon=":books:")
st.write(css,unsafe_allow_html=True)
st.markdown(
'<div class="logo-container"><img class="logo" src="' + url + '" /><img class="logo" src="' + aiLogoUrl + '" /></div>',
unsafe_allow_html=True)
if "conversation" not in st.session_state:
st.session_state.conversation = None
if "chat_history" not in st.session_state:
st.session_state.chat_history = None
st.header("Chat with multiple pdfs :books:")
user_question = st.text_input("Ask a question about your documents:")
if user_question:
handle_userinput(user_question)
with st.sidebar:
st.subheader("Your documents")
pdf_docs=st.file_uploader("Upload your files here and click process",accept_multiple_files=True)
if st.button("Process"):
with st.spinner("Processing"):
# get pdf text
raw_text = get_pdf_text(pdf_docs)
# get the text chunks
text_chunks = get_text_chunks(raw_text)
# create vector store
vectorstore = get_vectorstore(text_chunks)
# create conversation chai
st.session_state.conversation = get_conversation_chain(vectorstore)
if __name__=='__main__':
main()