Spaces:
Sleeping
Sleeping
File size: 3,988 Bytes
a4bb933 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 |
import gradio as gr
import torch
from PIL import Image
import numpy as np
import tensorflow as tf
from transformers import SegformerForSemanticSegmentation, AutoFeatureExtractor
import cv2
import json
# Load models
part_seg_model = SegformerForSemanticSegmentation.from_pretrained("Mohaddz/huggingCars")
damage_seg_model = SegformerForSemanticSegmentation.from_pretrained("Mohaddz/DamageSeg")
feature_extractor = AutoFeatureExtractor.from_pretrained("Mohaddz/huggingCars")
# Recreate the model architecture
def create_model(input_shape, num_classes):
inputs = tf.keras.Input(shape=input_shape)
x = tf.keras.layers.Dense(64, activation='relu')(inputs)
x = tf.keras.layers.Dense(32, activation='relu')(x)
outputs = tf.keras.layers.Dense(num_classes, activation='sigmoid')(x)
return tf.keras.Model(inputs=inputs, outputs=outputs)
# Load model weights
input_shape = 33 # Adjust this based on your actual input shape
num_classes = 29 # Adjust this based on your actual number of classes
dl_model = create_model(input_shape, num_classes)
dl_model.load_weights('improved_car_damage_prediction_model_weights.h5')
# Load parts list
with open('cars117.json', 'r', encoding='utf-8') as f:
data = json.load(f)
all_parts = sorted(list(set(part for entry in data.values() for part in entry.get('replaced_parts', []))))
def process_image(image):
# Convert to RGB if it's not
if image.mode != 'RGB':
image = image.convert('RGB')
# Prepare input for the model
inputs = feature_extractor(images=image, return_tensors="pt")
# Get damage segmentation
with torch.no_grad():
damage_output = damage_seg_model(**inputs).logits
damage_features = damage_output.squeeze().detach().numpy()
# Create damage segmentation heatmap
damage_heatmap = create_heatmap(damage_features)
damage_heatmap_resized = cv2.resize(damage_heatmap, (image.size[0], image.size[1]))
# Create annotated damage image
image_array = np.array(image)
damage_mask = np.argmax(damage_features, axis=0)
damage_mask_resized = cv2.resize(damage_mask, (image.size[0], image.size[1]), interpolation=cv2.INTER_NEAREST)
overlay = np.zeros_like(image_array)
overlay[damage_mask_resized > 0] = [255, 0, 0] # Red color for damage
annotated_image = cv2.addWeighted(image_array, 1, overlay, 0.5, 0)
# Process for part prediction and heatmap
with torch.no_grad():
part_output = part_seg_model(**inputs).logits
part_features = part_output.squeeze().detach().numpy()
part_heatmap = create_heatmap(part_features)
part_heatmap_resized = cv2.resize(part_heatmap, (image.size[0], image.size[1]))
# Predict parts to replace
input_vector = np.concatenate([part_features.mean(axis=(1, 2)), damage_features.mean(axis=(1, 2))])
prediction = dl_model.predict(np.array([input_vector]))
predicted_parts = [(all_parts[i], float(prob)) for i, prob in enumerate(prediction[0]) if prob > 0.1]
predicted_parts.sort(key=lambda x: x[1], reverse=True)
return (Image.fromarray(annotated_image),
Image.fromarray(damage_heatmap_resized),
Image.fromarray(part_heatmap_resized),
"\n".join([f"{part}: {prob:.2f}" for part, prob in predicted_parts[:5]]))
def create_heatmap(features):
heatmap = np.sum(features, axis=0)
heatmap = (heatmap - heatmap.min()) / (heatmap.max() - heatmap.min())
heatmap = np.uint8(255 * heatmap)
return cv2.applyColorMap(heatmap, cv2.COLORMAP_JET)
iface = gr.Interface(
fn=process_image,
inputs=gr.Image(type="pil"),
outputs=[
gr.Image(type="pil", label="Annotated Damage"),
gr.Image(type="pil", label="Damage Heatmap"),
gr.Image(type="pil", label="Part Segmentation Heatmap"),
gr.Textbox(label="Predicted Parts to Replace")
],
title="Car Damage Assessment",
description="Upload an image of a damaged car to get an assessment."
)
iface.launch() |