Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
@@ -1,32 +1,29 @@
|
|
1 |
import gradio as gr
|
2 |
import numpy as np
|
3 |
-
import torch
|
4 |
from PIL import Image, ImageDraw
|
5 |
-
from transformers import
|
6 |
-
|
7 |
|
8 |
# Load models from Hugging Face
|
9 |
-
part_seg_model =
|
10 |
-
damage_seg_model =
|
11 |
|
12 |
# Define your labels
|
13 |
part_labels = ["front-bumper", "fender", "hood", "door", "trunk", "cars-8I1q"] # Add all your part labels
|
14 |
damage_labels = ["dent", "scratch", "misalignment", "crack", "etc"] # Add all your damage labels
|
15 |
|
16 |
def preprocess_image(image):
|
17 |
-
# Resize
|
18 |
-
|
19 |
-
|
20 |
-
image =
|
21 |
-
|
22 |
-
return image.unsqueeze(0) # Add batch dimension
|
23 |
|
24 |
def inference_seg(model, image):
|
25 |
-
|
26 |
-
outputs = model(image)
|
27 |
logits = outputs.logits
|
28 |
-
mask =
|
29 |
-
return mask
|
30 |
|
31 |
def inference_part_seg(image):
|
32 |
preprocessed_image = preprocess_image(image)
|
@@ -62,7 +59,7 @@ def create_one_hot_vector(part_damage_pairs):
|
|
62 |
return vector
|
63 |
|
64 |
def visualize_results(image, part_mask, damage_mask):
|
65 |
-
img = Image.fromarray(image)
|
66 |
draw = ImageDraw.Draw(img)
|
67 |
|
68 |
for i in range(img.width):
|
|
|
1 |
import gradio as gr
|
2 |
import numpy as np
|
|
|
3 |
from PIL import Image, ImageDraw
|
4 |
+
from transformers import TFSegformerForSemanticSegmentation
|
5 |
+
import tensorflow as tf
|
6 |
|
7 |
# Load models from Hugging Face
|
8 |
+
part_seg_model = TFSegformerForSemanticSegmentation.from_pretrained("Mohaddz/huggingCars")
|
9 |
+
damage_seg_model = TFSegformerForSemanticSegmentation.from_pretrained("Mohaddz/DamageSegMohaddz/DamageSeg")
|
10 |
|
11 |
# Define your labels
|
12 |
part_labels = ["front-bumper", "fender", "hood", "door", "trunk", "cars-8I1q"] # Add all your part labels
|
13 |
damage_labels = ["dent", "scratch", "misalignment", "crack", "etc"] # Add all your damage labels
|
14 |
|
15 |
def preprocess_image(image):
|
16 |
+
# Resize the image
|
17 |
+
image = tf.image.resize(image, (512, 512))
|
18 |
+
# Normalize the image
|
19 |
+
image = tf.keras.applications.imagenet_utils.preprocess_input(image)
|
20 |
+
return tf.expand_dims(image, 0) # Add batch dimension
|
|
|
21 |
|
22 |
def inference_seg(model, image):
|
23 |
+
outputs = model(image, training=False)
|
|
|
24 |
logits = outputs.logits
|
25 |
+
mask = tf.argmax(logits, axis=-1)
|
26 |
+
return mask.numpy().squeeze()
|
27 |
|
28 |
def inference_part_seg(image):
|
29 |
preprocessed_image = preprocess_image(image)
|
|
|
59 |
return vector
|
60 |
|
61 |
def visualize_results(image, part_mask, damage_mask):
|
62 |
+
img = Image.fromarray((image * 255).astype('uint8'))
|
63 |
draw = ImageDraw.Draw(img)
|
64 |
|
65 |
for i in range(img.width):
|