Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -6,25 +6,63 @@ import tensorflow as tf
|
|
6 |
from transformers import SegformerForSemanticSegmentation, AutoFeatureExtractor
|
7 |
import cv2
|
8 |
import json
|
|
|
9 |
|
10 |
# Load models
|
11 |
part_seg_model = SegformerForSemanticSegmentation.from_pretrained("Mohaddz/huggingCars")
|
12 |
damage_seg_model = SegformerForSemanticSegmentation.from_pretrained("Mohaddz/DamageSeg")
|
13 |
feature_extractor = AutoFeatureExtractor.from_pretrained("Mohaddz/huggingCars")
|
14 |
|
15 |
-
#
|
16 |
-
def
|
17 |
-
|
18 |
-
|
19 |
-
|
20 |
-
|
21 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
22 |
|
23 |
-
#
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
-
dl_model.
|
|
|
|
|
|
|
28 |
|
29 |
# Load parts list
|
30 |
with open('cars117.json', 'r', encoding='utf-8') as f:
|
@@ -67,14 +105,18 @@ def process_image(image):
|
|
67 |
input_vector = np.concatenate([part_features.mean(axis=(1, 2)), damage_features.mean(axis=(1, 2))])
|
68 |
|
69 |
# Predict parts to replace using the loaded model
|
70 |
-
|
71 |
-
|
72 |
-
|
|
|
|
|
|
|
|
|
73 |
|
74 |
return (Image.fromarray(annotated_image),
|
75 |
Image.fromarray(damage_heatmap_resized),
|
76 |
Image.fromarray(part_heatmap_resized),
|
77 |
-
|
78 |
|
79 |
def create_heatmap(features):
|
80 |
heatmap = np.sum(features, axis=0)
|
|
|
6 |
from transformers import SegformerForSemanticSegmentation, AutoFeatureExtractor
|
7 |
import cv2
|
8 |
import json
|
9 |
+
import os
|
10 |
|
11 |
# Load models
|
12 |
part_seg_model = SegformerForSemanticSegmentation.from_pretrained("Mohaddz/huggingCars")
|
13 |
damage_seg_model = SegformerForSemanticSegmentation.from_pretrained("Mohaddz/DamageSeg")
|
14 |
feature_extractor = AutoFeatureExtractor.from_pretrained("Mohaddz/huggingCars")
|
15 |
|
16 |
+
# Attempt to load the model
|
17 |
+
def load_model(model_path):
|
18 |
+
print(f"Attempting to load model from: {model_path}")
|
19 |
+
print(f"Current working directory: {os.getcwd()}")
|
20 |
+
print(f"Files in current directory: {os.listdir('.')}")
|
21 |
+
|
22 |
+
try:
|
23 |
+
# Attempt 1: Load the entire model
|
24 |
+
model = tf.keras.models.load_model(model_path)
|
25 |
+
print("Successfully loaded the entire model.")
|
26 |
+
return model
|
27 |
+
except Exception as e:
|
28 |
+
print(f"Failed to load entire model. Error: {str(e)}")
|
29 |
+
|
30 |
+
try:
|
31 |
+
# Attempt 2: Load model architecture from JSON and weights separately
|
32 |
+
with open(model_path.replace('.h5', '.json'), 'r') as json_file:
|
33 |
+
model_json = json_file.read()
|
34 |
+
model = tf.keras.models.model_from_json(model_json)
|
35 |
+
model.load_weights(model_path)
|
36 |
+
print("Successfully loaded model from JSON and weights.")
|
37 |
+
return model
|
38 |
+
except Exception as e:
|
39 |
+
print(f"Failed to load model from JSON and weights. Error: {str(e)}")
|
40 |
+
|
41 |
+
try:
|
42 |
+
# Attempt 3: Load only the weights into a predefined architecture
|
43 |
+
input_shape = 33 # Adjust if necessary
|
44 |
+
num_classes = 29 # Adjust if necessary
|
45 |
+
inputs = tf.keras.Input(shape=(input_shape,))
|
46 |
+
x = tf.keras.layers.Dense(256, activation='relu')(inputs)
|
47 |
+
x = tf.keras.layers.Dense(128, activation='relu')(x)
|
48 |
+
x = tf.keras.layers.Dense(64, activation='relu')(x)
|
49 |
+
outputs = tf.keras.layers.Dense(num_classes, activation='sigmoid')(x)
|
50 |
+
model = tf.keras.Model(inputs=inputs, outputs=outputs)
|
51 |
+
model.load_weights(model_path)
|
52 |
+
print("Successfully loaded weights into predefined architecture.")
|
53 |
+
return model
|
54 |
+
except Exception as e:
|
55 |
+
print(f"Failed to load weights into predefined architecture. Error: {str(e)}")
|
56 |
+
raise Exception("All attempts to load the model failed.")
|
57 |
|
58 |
+
# Try to load the model
|
59 |
+
try:
|
60 |
+
dl_model = load_model('improved_car_damage_prediction_model.h5')
|
61 |
+
print("Model loaded successfully.")
|
62 |
+
dl_model.summary()
|
63 |
+
except Exception as e:
|
64 |
+
print(f"Failed to load the model: {str(e)}")
|
65 |
+
dl_model = None
|
66 |
|
67 |
# Load parts list
|
68 |
with open('cars117.json', 'r', encoding='utf-8') as f:
|
|
|
105 |
input_vector = np.concatenate([part_features.mean(axis=(1, 2)), damage_features.mean(axis=(1, 2))])
|
106 |
|
107 |
# Predict parts to replace using the loaded model
|
108 |
+
if dl_model is not None:
|
109 |
+
prediction = dl_model.predict(np.array([input_vector]))
|
110 |
+
predicted_parts = [(all_parts[i], float(prob)) for i, prob in enumerate(prediction[0]) if prob > 0.1]
|
111 |
+
predicted_parts.sort(key=lambda x: x[1], reverse=True)
|
112 |
+
prediction_text = "\n".join([f"{part}: {prob:.2f}" for part, prob in predicted_parts[:5]])
|
113 |
+
else:
|
114 |
+
prediction_text = "Model failed to load. Unable to make predictions."
|
115 |
|
116 |
return (Image.fromarray(annotated_image),
|
117 |
Image.fromarray(damage_heatmap_resized),
|
118 |
Image.fromarray(part_heatmap_resized),
|
119 |
+
prediction_text)
|
120 |
|
121 |
def create_heatmap(features):
|
122 |
heatmap = np.sum(features, axis=0)
|