Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -1,3 +1,103 @@
|
|
1 |
import gradio as gr
|
|
|
|
|
|
|
|
|
2 |
|
3 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
import gradio as gr
|
2 |
+
import numpy as np
|
3 |
+
import tensorflow as tf
|
4 |
+
from PIL import Image, ImageDraw
|
5 |
+
import io
|
6 |
|
7 |
+
# Load your models here
|
8 |
+
part_seg_model = tf.keras.models.load_model('path_to_part_seg_model')
|
9 |
+
damage_seg_model = tf.keras.models.load_model('path_to_damage_seg_model')
|
10 |
+
|
11 |
+
# Define your labels
|
12 |
+
part_labels = ["front-bumper", "fender", "hood", "door", "trunk"] # Add all your part labels
|
13 |
+
damage_labels = ["dent", "scratch", "misalignment", "crack"] # Add all your damage labels
|
14 |
+
|
15 |
+
def inference_part_seg(image):
|
16 |
+
# Implement your part segmentation inference here
|
17 |
+
# For now, we'll return a random mask
|
18 |
+
return np.random.randint(0, len(part_labels), size=image.shape[:2])
|
19 |
+
|
20 |
+
def inference_damage_seg(image):
|
21 |
+
# Implement your damage segmentation inference here
|
22 |
+
# For now, we'll return a random mask
|
23 |
+
return np.random.randint(0, len(damage_labels), size=image.shape[:2])
|
24 |
+
|
25 |
+
def combine_masks(part_mask, damage_mask):
|
26 |
+
part_damage_pairs = []
|
27 |
+
for part_id, part_name in enumerate(part_labels):
|
28 |
+
if part_name == "cars-8I1q":
|
29 |
+
continue
|
30 |
+
for damage_id, damage_name in enumerate(damage_labels):
|
31 |
+
if damage_name == "etc":
|
32 |
+
continue
|
33 |
+
part_binary = (part_mask == part_id)
|
34 |
+
damage_binary = (damage_mask == damage_id)
|
35 |
+
intersection = np.logical_and(part_binary, damage_binary)
|
36 |
+
if np.any(intersection):
|
37 |
+
part_damage_pairs.append((part_name, damage_name))
|
38 |
+
return part_damage_pairs
|
39 |
+
|
40 |
+
def create_one_hot_vector(part_damage_pairs):
|
41 |
+
vector = np.zeros(len(part_labels) * len(damage_labels))
|
42 |
+
for part, damage in part_damage_pairs:
|
43 |
+
if part in part_labels and damage in damage_labels:
|
44 |
+
part_index = part_labels.index(part)
|
45 |
+
damage_index = damage_labels.index(damage)
|
46 |
+
vector_index = part_index * len(damage_labels) + damage_index
|
47 |
+
vector[vector_index] = 1
|
48 |
+
return vector
|
49 |
+
|
50 |
+
def visualize_results(image, part_mask, damage_mask):
|
51 |
+
img = Image.fromarray(image)
|
52 |
+
draw = ImageDraw.Draw(img)
|
53 |
+
|
54 |
+
for i in range(img.width):
|
55 |
+
for j in range(img.height):
|
56 |
+
part = part_labels[part_mask[j, i]]
|
57 |
+
damage = damage_labels[damage_mask[j, i]]
|
58 |
+
if part != "cars-8I1q" and damage != "etc":
|
59 |
+
draw.point((i, j), fill="red")
|
60 |
+
|
61 |
+
return img
|
62 |
+
|
63 |
+
def process_image(image):
|
64 |
+
# Convert to numpy array if it's not already
|
65 |
+
if isinstance(image, Image.Image):
|
66 |
+
image = np.array(image)
|
67 |
+
|
68 |
+
# Perform inference
|
69 |
+
part_mask = inference_part_seg(image)
|
70 |
+
damage_mask = inference_damage_seg(image)
|
71 |
+
|
72 |
+
# Combine masks
|
73 |
+
part_damage_pairs = combine_masks(part_mask, damage_mask)
|
74 |
+
|
75 |
+
# Create one-hot encoded vector
|
76 |
+
one_hot_vector = create_one_hot_vector(part_damage_pairs)
|
77 |
+
|
78 |
+
# Visualize results
|
79 |
+
result_image = visualize_results(image, part_mask, damage_mask)
|
80 |
+
|
81 |
+
return result_image, part_damage_pairs, one_hot_vector.tolist()
|
82 |
+
|
83 |
+
def gradio_interface(input_image):
|
84 |
+
result_image, part_damage_pairs, one_hot_vector = process_image(input_image)
|
85 |
+
|
86 |
+
# Convert part_damage_pairs to a string for display
|
87 |
+
damage_description = "\n".join([f"{part} : {damage}" for part, damage in part_damage_pairs])
|
88 |
+
|
89 |
+
return result_image, damage_description, str(one_hot_vector)
|
90 |
+
|
91 |
+
iface = gr.Interface(
|
92 |
+
fn=gradio_interface,
|
93 |
+
inputs=gr.Image(type="pil"),
|
94 |
+
outputs=[
|
95 |
+
gr.Image(type="pil", label="Detected Damage"),
|
96 |
+
gr.Textbox(label="Damage Description"),
|
97 |
+
gr.Textbox(label="One-hot Encoded Vector")
|
98 |
+
],
|
99 |
+
title="Car Damage Assessment",
|
100 |
+
description="Upload an image of a damaged car to get an assessment of the damage."
|
101 |
+
)
|
102 |
+
|
103 |
+
iface.launch()
|