import gradio as gr import numpy as np import torch from PIL import Image, ImageDraw from transformers import SegformerForSemanticSegmentation from torchvision.transforms import Resize, ToTensor, Normalize # Load models from Hugging Face part_seg_model = SegformerForSemanticSegmentation.from_pretrained("Mohaddz/huggingCars") damage_seg_model = SegformerForSemanticSegmentation.from_pretrained("Mohaddz/DamageSegMohaddz/DamageSeg") # Define your labels part_labels = ["front-bumper", "fender", "hood", "door", "trunk", "cars-8I1q"] # Add all your part labels damage_labels = ["dent", "scratch", "misalignment", "crack", "etc"] # Add all your damage labels def preprocess_image(image): # Resize and normalize the image transform = Resize((512, 512)) image = transform(Image.fromarray(image)) image = ToTensor()(image) image = Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])(image) return image.unsqueeze(0) # Add batch dimension def inference_seg(model, image): with torch.no_grad(): outputs = model(image) logits = outputs.logits mask = torch.argmax(logits, dim=1).squeeze().numpy() return mask def inference_part_seg(image): preprocessed_image = preprocess_image(image) return inference_seg(part_seg_model, preprocessed_image) def inference_damage_seg(image): preprocessed_image = preprocess_image(image) return inference_seg(damage_seg_model, preprocessed_image) def combine_masks(part_mask, damage_mask): part_damage_pairs = [] for part_id, part_name in enumerate(part_labels): if part_name == "cars-8I1q": continue for damage_id, damage_name in enumerate(damage_labels): if damage_name == "etc": continue part_binary = (part_mask == part_id) damage_binary = (damage_mask == damage_id) intersection = np.logical_and(part_binary, damage_binary) if np.any(intersection): part_damage_pairs.append((part_name, damage_name)) return part_damage_pairs def create_one_hot_vector(part_damage_pairs): vector = np.zeros(len(part_labels) * len(damage_labels)) for part, damage in part_damage_pairs: if part in part_labels and damage in damage_labels: part_index = part_labels.index(part) damage_index = damage_labels.index(damage) vector_index = part_index * len(damage_labels) + damage_index vector[vector_index] = 1 return vector def visualize_results(image, part_mask, damage_mask): img = Image.fromarray(image) draw = ImageDraw.Draw(img) for i in range(img.width): for j in range(img.height): part = part_labels[part_mask[j, i]] damage = damage_labels[damage_mask[j, i]] if part != "cars-8I1q" and damage != "etc": draw.point((i, j), fill="red") return img def process_image(image): # Perform inference part_mask = inference_part_seg(image) damage_mask = inference_damage_seg(image) # Combine masks part_damage_pairs = combine_masks(part_mask, damage_mask) # Create one-hot encoded vector one_hot_vector = create_one_hot_vector(part_damage_pairs) # Visualize results result_image = visualize_results(image, part_mask, damage_mask) return result_image, part_damage_pairs, one_hot_vector.tolist() def gradio_interface(input_image): result_image, part_damage_pairs, one_hot_vector = process_image(input_image) # Convert part_damage_pairs to a string for display damage_description = "\n".join([f"{part} : {damage}" for part, damage in part_damage_pairs]) return result_image, damage_description, str(one_hot_vector) iface = gr.Interface( fn=gradio_interface, inputs=gr.Image(type="numpy"), outputs=[ gr.Image(type="pil", label="Detected Damage"), gr.Textbox(label="Damage Description"), gr.Textbox(label="One-hot Encoded Vector") ], title="Car Damage Assessment", description="Upload an image of a damaged car to get an assessment of the damage." ) iface.launch()