import gradio as gr
import torch
from PIL import Image
import numpy as np
import tensorflow as tf
from transformers import SegformerForSemanticSegmentation, AutoFeatureExtractor
import cv2
import json
import os

# Load models
part_seg_model = SegformerForSemanticSegmentation.from_pretrained("Mohaddz/huggingCars")
damage_seg_model = SegformerForSemanticSegmentation.from_pretrained("Mohaddz/DamageSeg")
feature_extractor = AutoFeatureExtractor.from_pretrained("Mohaddz/huggingCars")

# Attempt to load the model
def load_model(model_path):
    print(f"Attempting to load model from: {model_path}")
    print(f"Current working directory: {os.getcwd()}")
    print(f"Files in current directory: {os.listdir('.')}")
    
    try:
        # Attempt 1: Load the entire model
        model = tf.keras.models.load_model(model_path)
        print("Successfully loaded the entire model.")
        return model
    except Exception as e:
        print(f"Failed to load entire model. Error: {str(e)}")
        
        try:
            # Attempt 2: Load model architecture from JSON and weights separately
            with open(model_path.replace('.h5', '.json'), 'r') as json_file:
                model_json = json_file.read()
            model = tf.keras.models.model_from_json(model_json)
            model.load_weights(model_path)
            print("Successfully loaded model from JSON and weights.")
            return model
        except Exception as e:
            print(f"Failed to load model from JSON and weights. Error: {str(e)}")
            
            try:
                # Attempt 3: Load only the weights into a predefined architecture
                input_shape = 33  # Adjust if necessary
                num_classes = 29  # Adjust if necessary
                inputs = tf.keras.Input(shape=(input_shape,))
                x = tf.keras.layers.Dense(256, activation='relu')(inputs)
                x = tf.keras.layers.Dense(128, activation='relu')(x)
                x = tf.keras.layers.Dense(64, activation='relu')(x)
                outputs = tf.keras.layers.Dense(num_classes, activation='sigmoid')(x)
                model = tf.keras.Model(inputs=inputs, outputs=outputs)
                model.load_weights(model_path)
                print("Successfully loaded weights into predefined architecture.")
                return model
            except Exception as e:
                print(f"Failed to load weights into predefined architecture. Error: {str(e)}")
                raise Exception("All attempts to load the model failed.")

# Try to load the model
try:
    dl_model = load_model('improved_car_damage_prediction_model(2).h5')
    print("Model loaded successfully.")
    dl_model.summary()
except Exception as e:
    print(f"Failed to load the model: {str(e)}")
    dl_model = None

# Load parts list
with open('cars117.json', 'r', encoding='utf-8') as f:
    data = json.load(f)
all_parts = sorted(list(set(part for entry in data.values() for part in entry.get('replaced_parts', []))))

def process_image(image):
    # Convert to RGB if it's not
    if image.mode != 'RGB':
        image = image.convert('RGB')
    
    # Prepare input for the model
    inputs = feature_extractor(images=image, return_tensors="pt")
    
    # Get damage segmentation
    with torch.no_grad():
        damage_output = damage_seg_model(**inputs).logits
    damage_features = damage_output.squeeze().detach().numpy()
    
    # Create damage segmentation heatmap
    damage_heatmap = create_heatmap(damage_features)
    damage_heatmap_resized = cv2.resize(damage_heatmap, (image.size[0], image.size[1]))
    
    # Create annotated damage image
    image_array = np.array(image)
    damage_mask = np.argmax(damage_features, axis=0)
    damage_mask_resized = cv2.resize(damage_mask, (image.size[0], image.size[1]), interpolation=cv2.INTER_NEAREST)
    overlay = np.zeros_like(image_array)
    overlay[damage_mask_resized > 0] = [255, 0, 0]  # Red color for damage
    annotated_image = cv2.addWeighted(image_array, 1, overlay, 0.5, 0)
    
    # Process for part prediction and heatmap
    with torch.no_grad():
        part_output = part_seg_model(**inputs).logits
    part_features = part_output.squeeze().detach().numpy()
    part_heatmap = create_heatmap(part_features)
    part_heatmap_resized = cv2.resize(part_heatmap, (image.size[0], image.size[1]))
    
    # Prepare input for damage prediction model
    input_vector = np.concatenate([part_features.mean(axis=(1, 2)), damage_features.mean(axis=(1, 2))])
    
    # Predict parts to replace using the loaded model
    if dl_model is not None:
        prediction = dl_model.predict(np.array([input_vector]))
        predicted_parts = [(all_parts[i], float(prob)) for i, prob in enumerate(prediction[0]) if prob > 0.1]
        predicted_parts.sort(key=lambda x: x[1], reverse=True)
        prediction_text = "\n".join([f"{part}: {prob:.2f}" for part, prob in predicted_parts[:5]])
    else:
        prediction_text = "Model failed to load. Unable to make predictions."
    
    return (Image.fromarray(annotated_image), 
            Image.fromarray(damage_heatmap_resized), 
            Image.fromarray(part_heatmap_resized), 
            prediction_text)

def create_heatmap(features):
    heatmap = np.sum(features, axis=0)
    heatmap = (heatmap - heatmap.min()) / (heatmap.max() - heatmap.min())
    heatmap = np.uint8(255 * heatmap)
    return cv2.applyColorMap(heatmap, cv2.COLORMAP_JET)

iface = gr.Interface(
    fn=process_image,
    inputs=gr.Image(type="pil"),
    outputs=[
        gr.Image(type="pil", label="Annotated Damage"),
        gr.Image(type="pil", label="Damage Heatmap"),
        gr.Image(type="pil", label="Part Segmentation Heatmap"),
        gr.Textbox(label="Predicted Parts to Replace")
    ],
    title="Car Damage Assessment",
    description="Upload an image of a damaged car to get an assessment."
)

iface.launch()