import gradio as gr import numpy as np from PIL import Image, ImageDraw # Define your labels part_labels = ["front-bumper", "fender", "hood", "door", "trunk"] damage_labels = ["dent", "scratch", "misalignment", "crack"] def mock_inference(image): # This function mocks the segmentation model output # It randomly assigns labels to different parts of the image height, width = image.shape[:2] part_mask = np.random.randint(0, len(part_labels), (height, width)) damage_mask = np.random.randint(0, len(damage_labels), (height, width)) return part_mask, damage_mask def combine_masks(part_mask, damage_mask): part_damage_pairs = [] for part_id, part_name in enumerate(part_labels): for damage_id, damage_name in enumerate(damage_labels): part_binary = (part_mask == part_id) damage_binary = (damage_mask == damage_id) intersection = np.logical_and(part_binary, damage_binary) if np.any(intersection): part_damage_pairs.append((part_name, damage_name)) return part_damage_pairs def create_one_hot_vector(part_damage_pairs): vector = np.zeros(len(part_labels) * len(damage_labels)) for part, damage in part_damage_pairs: if part in part_labels and damage in damage_labels: part_index = part_labels.index(part) damage_index = damage_labels.index(damage) vector_index = part_index * len(damage_labels) + damage_index vector[vector_index] = 1 return vector def visualize_results(image, part_mask, damage_mask): img = Image.fromarray(image) draw = ImageDraw.Draw(img) for i in range(0, img.width, 10): # Sample every 10th pixel for efficiency for j in range(0, img.height, 10): part = part_labels[part_mask[j, i]] damage = damage_labels[damage_mask[j, i]] draw.point((i, j), fill="red") return img def process_image(image): # Mock inference part_mask, damage_mask = mock_inference(image) # Combine masks part_damage_pairs = combine_masks(part_mask, damage_mask) # Create one-hot encoded vector one_hot_vector = create_one_hot_vector(part_damage_pairs) # Visualize results result_image = visualize_results(image, part_mask, damage_mask) return result_image, part_damage_pairs, one_hot_vector.tolist() def gradio_interface(input_image): result_image, part_damage_pairs, one_hot_vector = process_image(input_image) # Convert part_damage_pairs to a string for display damage_description = "\n".join([f"{part} : {damage}" for part, damage in part_damage_pairs]) return result_image, damage_description, str(one_hot_vector) iface = gr.Interface( fn=gradio_interface, inputs=gr.Image(type="numpy"), outputs=[ gr.Image(type="pil", label="Detected Damage (Mocked)"), gr.Textbox(label="Damage Description"), gr.Textbox(label="One-hot Encoded Vector") ], title="Car Damage Assessment (Demo)", description="Upload an image of a damaged car to get a mocked assessment of the damage. Note: This is a demo using random predictions, not actual model inference." ) iface.launch()