import gradio as gr import torch from PIL import Image import numpy as np import tensorflow as tf from transformers import SegformerForSemanticSegmentation, AutoFeatureExtractor import cv2 import json import os # Load models part_seg_model = SegformerForSemanticSegmentation.from_pretrained("Mohaddz/huggingCars") damage_seg_model = SegformerForSemanticSegmentation.from_pretrained("Mohaddz/DamageSeg") feature_extractor = AutoFeatureExtractor.from_pretrained("Mohaddz/huggingCars") # Attempt to load the model def load_model(model_path): print(f"Attempting to load model from: {model_path}") print(f"Current working directory: {os.getcwd()}") print(f"Files in current directory: {os.listdir('.')}") try: # Attempt 1: Load the entire model model = tf.keras.models.load_model(model_path) print("Successfully loaded the entire model.") return model except Exception as e: print(f"Failed to load entire model. Error: {str(e)}") try: # Attempt 2: Load model architecture from JSON and weights separately with open(model_path.replace('.h5', '.json'), 'r') as json_file: model_json = json_file.read() model = tf.keras.models.model_from_json(model_json) model.load_weights(model_path) print("Successfully loaded model from JSON and weights.") return model except Exception as e: print(f"Failed to load model from JSON and weights. Error: {str(e)}") try: # Attempt 3: Load only the weights into a predefined architecture input_shape = 33 # Adjust if necessary num_classes = 29 # Adjust if necessary inputs = tf.keras.Input(shape=(input_shape,)) x = tf.keras.layers.Dense(256, activation='relu')(inputs) x = tf.keras.layers.Dense(128, activation='relu')(x) x = tf.keras.layers.Dense(64, activation='relu')(x) outputs = tf.keras.layers.Dense(num_classes, activation='sigmoid')(x) model = tf.keras.Model(inputs=inputs, outputs=outputs) model.load_weights(model_path) print("Successfully loaded weights into predefined architecture.") return model except Exception as e: print(f"Failed to load weights into predefined architecture. Error: {str(e)}") raise Exception("All attempts to load the model failed.") # Try to load the model try: dl_model = load_model('improved_car_damage_prediction_model.h5') print("Model loaded successfully.") dl_model.summary() except Exception as e: print(f"Failed to load the model: {str(e)}") dl_model = None # Load parts list with open('cars117.json', 'r', encoding='utf-8') as f: data = json.load(f) all_parts = sorted(list(set(part for entry in data.values() for part in entry.get('replaced_parts', [])))) def process_image(image): # Convert to RGB if it's not if image.mode != 'RGB': image = image.convert('RGB') # Prepare input for the model inputs = feature_extractor(images=image, return_tensors="pt") # Get damage segmentation with torch.no_grad(): damage_output = damage_seg_model(**inputs).logits damage_features = damage_output.squeeze().detach().numpy() # Create damage segmentation heatmap damage_heatmap = create_heatmap(damage_features) damage_heatmap_resized = cv2.resize(damage_heatmap, (image.size[0], image.size[1])) # Create annotated damage image image_array = np.array(image) damage_mask = np.argmax(damage_features, axis=0) damage_mask_resized = cv2.resize(damage_mask, (image.size[0], image.size[1]), interpolation=cv2.INTER_NEAREST) overlay = np.zeros_like(image_array) overlay[damage_mask_resized > 0] = [255, 0, 0] # Red color for damage annotated_image = cv2.addWeighted(image_array, 1, overlay, 0.5, 0) # Process for part prediction and heatmap with torch.no_grad(): part_output = part_seg_model(**inputs).logits part_features = part_output.squeeze().detach().numpy() part_heatmap = create_heatmap(part_features) part_heatmap_resized = cv2.resize(part_heatmap, (image.size[0], image.size[1])) # Prepare input for damage prediction model input_vector = np.concatenate([part_features.mean(axis=(1, 2)), damage_features.mean(axis=(1, 2))]) # Predict parts to replace using the loaded model if dl_model is not None: prediction = dl_model.predict(np.array([input_vector])) predicted_parts = [(all_parts[i], float(prob)) for i, prob in enumerate(prediction[0]) if prob > 0.1] predicted_parts.sort(key=lambda x: x[1], reverse=True) prediction_text = "\n".join([f"{part}: {prob:.2f}" for part, prob in predicted_parts[:5]]) else: prediction_text = "Model failed to load. Unable to make predictions." return (Image.fromarray(annotated_image), Image.fromarray(damage_heatmap_resized), Image.fromarray(part_heatmap_resized), prediction_text) def create_heatmap(features): heatmap = np.sum(features, axis=0) heatmap = (heatmap - heatmap.min()) / (heatmap.max() - heatmap.min()) heatmap = np.uint8(255 * heatmap) return cv2.applyColorMap(heatmap, cv2.COLORMAP_JET) iface = gr.Interface( fn=process_image, inputs=gr.Image(type="pil"), outputs=[ gr.Image(type="pil", label="Annotated Damage"), gr.Image(type="pil", label="Damage Heatmap"), gr.Image(type="pil", label="Part Segmentation Heatmap"), gr.Textbox(label="Predicted Parts to Replace") ], title="Car Damage Assessment", description="Upload an image of a damaged car to get an assessment." ) iface.launch()