import gradio as gr import torch from PIL import Image import numpy as np import tensorflow as tf from transformers import SegformerForSemanticSegmentation, AutoFeatureExtractor import cv2 import json # Load models part_seg_model = SegformerForSemanticSegmentation.from_pretrained("Mohaddz/huggingCars") damage_seg_model = SegformerForSemanticSegmentation.from_pretrained("Mohaddz/DamageSeg") feature_extractor = AutoFeatureExtractor.from_pretrained("Mohaddz/huggingCars") # Recreate the model architecture def create_model(input_shape, num_classes): inputs = tf.keras.Input(shape=input_shape) x = tf.keras.layers.Dense(64, activation='relu')(inputs) x = tf.keras.layers.Dense(32, activation='relu')(x) outputs = tf.keras.layers.Dense(num_classes, activation='sigmoid')(x) return tf.keras.Model(inputs=inputs, outputs=outputs) # Load model weights input_shape = 33 # Adjust this based on your actual input shape num_classes = 29 # Adjust this based on your actual number of classes dl_model = create_model(input_shape, num_classes) dl_model.load_weights('improved_car_damage_prediction_model_weights.h5') # Load parts list with open('cars117.json', 'r', encoding='utf-8') as f: data = json.load(f) all_parts = sorted(list(set(part for entry in data.values() for part in entry.get('replaced_parts', [])))) def process_image(image): # Convert to RGB if it's not if image.mode != 'RGB': image = image.convert('RGB') # Prepare input for the model inputs = feature_extractor(images=image, return_tensors="pt") # Get damage segmentation with torch.no_grad(): damage_output = damage_seg_model(**inputs).logits damage_features = damage_output.squeeze().detach().numpy() # Create damage segmentation heatmap damage_heatmap = create_heatmap(damage_features) damage_heatmap_resized = cv2.resize(damage_heatmap, (image.size[0], image.size[1])) # Create annotated damage image image_array = np.array(image) damage_mask = np.argmax(damage_features, axis=0) damage_mask_resized = cv2.resize(damage_mask, (image.size[0], image.size[1]), interpolation=cv2.INTER_NEAREST) overlay = np.zeros_like(image_array) overlay[damage_mask_resized > 0] = [255, 0, 0] # Red color for damage annotated_image = cv2.addWeighted(image_array, 1, overlay, 0.5, 0) # Process for part prediction and heatmap with torch.no_grad(): part_output = part_seg_model(**inputs).logits part_features = part_output.squeeze().detach().numpy() part_heatmap = create_heatmap(part_features) part_heatmap_resized = cv2.resize(part_heatmap, (image.size[0], image.size[1])) # Predict parts to replace input_vector = np.concatenate([part_features.mean(axis=(1, 2)), damage_features.mean(axis=(1, 2))]) prediction = dl_model.predict(np.array([input_vector])) predicted_parts = [(all_parts[i], float(prob)) for i, prob in enumerate(prediction[0]) if prob > 0.1] predicted_parts.sort(key=lambda x: x[1], reverse=True) return (Image.fromarray(annotated_image), Image.fromarray(damage_heatmap_resized), Image.fromarray(part_heatmap_resized), "\n".join([f"{part}: {prob:.2f}" for part, prob in predicted_parts[:5]])) def create_heatmap(features): heatmap = np.sum(features, axis=0) heatmap = (heatmap - heatmap.min()) / (heatmap.max() - heatmap.min()) heatmap = np.uint8(255 * heatmap) return cv2.applyColorMap(heatmap, cv2.COLORMAP_JET) iface = gr.Interface( fn=process_image, inputs=gr.Image(type="pil"), outputs=[ gr.Image(type="pil", label="Annotated Damage"), gr.Image(type="pil", label="Damage Heatmap"), gr.Image(type="pil", label="Part Segmentation Heatmap"), gr.Textbox(label="Predicted Parts to Replace") ], title="Car Damage Assessment", description="Upload an image of a damaged car to get an assessment." ) iface.launch()