Spaces:
Running
on
Zero
Running
on
Zero
import torch | |
import torch.nn as nn | |
import pytorch_lightning as pl | |
from torch.nn import functional as F | |
from torch.utils.data import DataLoader | |
from eo import Transformer | |
from tqdm import tqdm | |
import math | |
import torch | |
import torch.nn as nn | |
from torch.nn.utils.rnn import pad_sequence | |
# sequences is a list of tensors of shape TxH where T is the seqlen and H is the feats dim | |
def pad_seq(sequences, batch_first=True, padding_value=0.0, prepadding=True): | |
lens = [i.shape[0]for i in sequences] | |
padded_sequences = pad_sequence(sequences, batch_first=True, padding_value=padding_value) # NxTxH | |
if prepadding: | |
for i in range(len(lens)): | |
padded_sequences[i] = padded_sequences[i].roll(-lens[i]) | |
if not batch_first: | |
padded_sequences = padded_sequences.transpose(0, 1) # TxNxH | |
return padded_sequences | |
def get_batches(X, batch_size=16): | |
num_batches = math.ceil(len(X) / batch_size) | |
for i in range(num_batches): | |
x = X[i*batch_size : (i+1)*batch_size] | |
yield x | |
class TashkeelModel(pl.LightningModule): | |
def __init__(self, tokenizer, max_seq_len, d_model=512, n_layers=3, n_heads=16, drop_prob=0.1, learnable_pos_emb=True): | |
super(TashkeelModel, self).__init__() | |
ffn_hidden = 4 * d_model | |
src_pad_idx = tokenizer.letters_map['<PAD>'] | |
trg_pad_idx = tokenizer.tashkeel_map['<PAD>'] | |
enc_voc_size = len(tokenizer.letters_map) # 37 + 3 | |
dec_voc_size = len(tokenizer.tashkeel_map) # 15 + 3 | |
self.transformer = Transformer(src_pad_idx=src_pad_idx, | |
trg_pad_idx=trg_pad_idx, | |
d_model=d_model, | |
enc_voc_size=enc_voc_size, | |
dec_voc_size=dec_voc_size, | |
max_len=max_seq_len, | |
ffn_hidden=ffn_hidden, | |
n_head=n_heads, | |
n_layers=n_layers, | |
drop_prob=drop_prob, | |
learnable_pos_emb=learnable_pos_emb | |
) | |
self.criterion = nn.CrossEntropyLoss(ignore_index=tokenizer.tashkeel_map['<PAD>']) | |
self.tokenizer = tokenizer | |
def forward(self, x): | |
y_pred = self.transformer(x) | |
return y_pred | |
def training_step(self, batch, batch_idx): | |
input_ids, target_ids = batch | |
input_ids = input_ids[:, 1:-1] | |
y_out = target_ids[:, 1:-1] | |
y_pred = self(input_ids) | |
loss = self.criterion(y_pred.transpose(1, 2), y_out) | |
self.log('train_loss', loss, prog_bar=True) | |
# sch = self.lr_schedulers() | |
# sch.step() | |
# self.log('lr', sch.get_last_lr()[0], prog_bar=True) | |
return loss | |
def validation_step(self, batch, batch_idx): | |
input_ids, target_ids = batch | |
input_ids = input_ids[:, 1:-1] | |
y_out = target_ids[:, 1:-1] | |
y_pred = self(input_ids) | |
loss = self.criterion(y_pred.transpose(1, 2), y_out) | |
pred_text_with_tashkeels = self.tokenizer.decode(input_ids, y_pred.argmax(2).squeeze()) | |
true_text_with_tashkeels = self.tokenizer.decode(input_ids, y_out) | |
total_val_der_distance = 0 | |
total_val_der_ref_length = 0 | |
for i in range(len(true_text_with_tashkeels)): | |
pred_text_with_tashkeel = pred_text_with_tashkeels[i] | |
true_text_with_tashkeel = true_text_with_tashkeels[i] | |
val_der = self.tokenizer.compute_der(true_text_with_tashkeel, pred_text_with_tashkeel) | |
total_val_der_distance += val_der['distance'] | |
total_val_der_ref_length += val_der['ref_length'] | |
total_der_error = total_val_der_distance / total_val_der_ref_length | |
self.log('val_loss', loss) | |
self.log('val_der', torch.FloatTensor([total_der_error])) | |
self.log('val_der_distance', torch.FloatTensor([total_val_der_distance])) | |
self.log('val_der_ref_length', torch.FloatTensor([total_val_der_ref_length])) | |
def test_step(self, batch, batch_idx): | |
input_ids, target_ids = batch | |
y_pred = self(input_ids, None) | |
loss = self.criterion(y_pred.transpose(1, 2), target_ids) | |
self.log('test_loss', loss) | |
def configure_optimizers(self): | |
optimizer = torch.optim.AdamW(self.parameters(), lr=3e-5) | |
#max_iters = 10000 | |
#lr_scheduler = torch.optim.lr_scheduler.CosineAnnealingLR(optimizer, T_max=max_iters, eta_min=3e-6) | |
gamma = 1 / 1.000001 | |
#gamma = 1 / 1.0001 | |
#lr_scheduler = torch.optim.lr_scheduler.ExponentialLR(optimizer, gamma) | |
opts = {"optimizer": optimizer} #, "lr_scheduler": lr_scheduler} | |
return opts | |
def do_tashkeel_batch(self, texts, batch_size=16, verbose=True): | |
self.eval() | |
device = next(self.parameters()).device | |
text_with_tashkeel = [] | |
data_iter = get_batches(texts, batch_size) | |
if verbose: | |
num_batches = math.ceil(len(texts) / batch_size) | |
data_iter = tqdm(data_iter, total=num_batches) | |
for texts_mini in data_iter: | |
input_ids_list = [] | |
for text in texts_mini: | |
input_ids, _ = self.tokenizer.encode(text, test_match=False) | |
input_ids_list.append(input_ids) | |
batch_input_ids = pad_seq(input_ids_list, batch_first=True, padding_value=self.tokenizer.letters_map['<PAD>'], prepadding=False) | |
batch_input_ids = batch_input_ids[:, 1:-1].to(device) | |
y_pred = self(batch_input_ids) | |
y_pred = y_pred.argmax(-1) | |
# IMPORTANT NOTE: the following code snippet is to FORCE the prediction of the input space char to output no_tashkeel tag '<NT>' | |
y_pred[self.tokenizer.letters_map[' '] == batch_input_ids] = self.tokenizer.tashkeel_map[self.tokenizer.no_tashkeel_tag] | |
text_with_tashkeel_mini = self.tokenizer.decode(batch_input_ids, y_pred) | |
text_with_tashkeel += text_with_tashkeel_mini | |
return text_with_tashkeel | |
def do_tashkeel(self, text): | |
return self.do_tashkeel_batch([text])[0] | |