Spaces:
Runtime error
Runtime error
import gradio as gr | |
import pandas as pd | |
from fuzzywuzzy import fuzz | |
def load_leaderboard(): | |
imagenet_df = pd.read_csv('https://raw.githubusercontent.com/huggingface/pytorch-image-models/main/results/results-imagenet.csv') | |
imagenet_real_df = pd.read_csv('https://raw.githubusercontent.com/huggingface/pytorch-image-models/main/results/results-imagenet-real.csv') | |
imagenetv2_df = pd.read_csv('https://raw.githubusercontent.com/huggingface/pytorch-image-models/main/results/results-imagenetv2-matched-frequency.csv') | |
sketch_df = pd.read_csv('https://raw.githubusercontent.com/huggingface/pytorch-image-models/main/results/results-sketch.csv') | |
imagenet_a_df = pd.read_csv('https://raw.githubusercontent.com/huggingface/pytorch-image-models/main/results/results-imagenet-a.csv') | |
imagenet_r_df = pd.read_csv('https://raw.githubusercontent.com/huggingface/pytorch-image-models/main/results/results-imagenet-r.csv') | |
# columns to remove from each dataframe | |
remove_column_names = ["top1_err", "top5_err", "top1_diff", "top5_diff", "rank_diff"] | |
for remove_column_name in remove_column_names: | |
if remove_column_name in imagenet_df.columns: | |
imagenet_df = imagenet_df.drop(columns=remove_column_name) | |
if remove_column_name in imagenet_real_df.columns: | |
imagenet_real_df = imagenet_real_df.drop(columns=remove_column_name) | |
if remove_column_name in imagenetv2_df.columns: | |
imagenetv2_df = imagenetv2_df.drop(columns=remove_column_name) | |
if remove_column_name in sketch_df.columns: | |
sketch_df = sketch_df.drop(columns=remove_column_name) | |
if remove_column_name in imagenet_a_df.columns: | |
imagenet_a_df = imagenet_a_df.drop(columns=remove_column_name) | |
if remove_column_name in imagenet_r_df.columns: | |
imagenet_r_df = imagenet_r_df.drop(columns=remove_column_name) | |
# Rename top1 and top5 columns to the name of the dataframe+top1/top5 | |
imagenet_df = imagenet_df.rename(columns={"top1": "imagenet_top1", "top5": "imagenet_top5"}) | |
imagenet_real_df = imagenet_real_df.rename(columns={"top1": "imagenet_real_top1", "top5": "imagenet_real_top5"}) | |
imagenetv2_df = imagenetv2_df.rename(columns={"top1": "imagenetv2_top1", "top5": "imagenetv2_top5"}) | |
sketch_df = sketch_df.rename(columns={"top1": "sketch_top1", "top5": "sketch_top5"}) | |
imagenet_a_df = imagenet_a_df.rename(columns={"top1": "imagenet_a_top1", "top5": "imagenet_a_top5"}) | |
imagenet_r_df = imagenet_r_df.rename(columns={"top1": "imagenet_r_top1", "top5": "imagenet_r_top5"}) | |
# Merge all dataframes | |
result = pd.merge(imagenet_df, imagenet_real_df, on=['model', 'param_count', 'img_size', 'crop_pct', 'interpolation'], how='outer') | |
result = pd.merge(result, imagenetv2_df, on=['model', 'param_count', 'img_size', 'crop_pct', 'interpolation'], how='outer') | |
result = pd.merge(result, sketch_df, on=['model', 'param_count', 'img_size', 'crop_pct', 'interpolation'], how='outer') | |
result = pd.merge(result, imagenet_a_df, on=['model', 'param_count', 'img_size', 'crop_pct', 'interpolation'], how='outer') | |
result = pd.merge(result, imagenet_r_df, on=['model', 'param_count', 'img_size', 'crop_pct', 'interpolation'], how='outer') | |
# Average top1 and top5 and add the average column after `model` column | |
result['average_top1'] = result[['imagenet_top1', 'imagenet_real_top1', 'imagenetv2_top1', 'sketch_top1', 'imagenet_a_top1', 'imagenet_r_top1']].mean(axis=1) | |
result['average_top5'] = result[['imagenet_top5', 'imagenet_real_top5', 'imagenetv2_top5', 'sketch_top5', 'imagenet_a_top5', 'imagenet_r_top5']].mean(axis=1) | |
result = result[['model', 'average_top1', 'average_top5', 'param_count', 'img_size', 'crop_pct', 'interpolation', 'imagenet_top1', 'imagenet_top5', 'imagenet_real_top1', 'imagenet_real_top5', 'imagenetv2_top1', 'imagenetv2_top5', 'sketch_top1', 'sketch_top5', 'imagenet_a_top1', 'imagenet_a_top5', 'imagenet_r_top1', 'imagenet_r_top5']] | |
result = result.sort_values(by='average_top1', ascending=False) | |
# Round the values to 3 decimal places | |
result = result.round(3) | |
return result | |
global df | |
df = load_leaderboard() | |
def search_leaderboard(model_name): | |
if not model_name: | |
return df | |
threshold = 95 # You can adjust this value to make the search more or less strict | |
def calculate_similarity(row): | |
similarity = fuzz.partial_ratio(model_name.lower(), row['model'].lower()) | |
return similarity if similarity >= threshold else 0 | |
# Add a new column for similarity scores | |
df['similarity'] = df.apply(calculate_similarity, axis=1) | |
# Filter and sort the dataframe | |
filtered_df = df[df['similarity'] > 0].sort_values('similarity', ascending=False) | |
# Remove the similarity column before returning | |
filtered_df = filtered_df.drop('similarity', axis=1) | |
return filtered_df | |
with gr.Blocks("Timm Leaderboard") as app: | |
gr.HTML("<center><h1>PyTorch Image Models Leaderboard</h1></center>") | |
gr.HTML("<p>This leaderboard is based on the results of the models from the <a href='https://github.com/huggingface/pytorch-image-models'>PyTorch Image Models</a> repository.</p>") | |
with gr.Row(): | |
search_bar = gr.Textbox(lines=1, label="Search Model (You can press Enter to Search)", placeholder="Search for a model", scale=4) | |
search_btn = gr.Button(value="Search", variant="primary", scale=1) | |
leaderboard = gr.Dataframe(df) | |
refresh_button = gr.Button(value="Refresh Leaderboard", variant="primary") | |
refresh_button.click(load_leaderboard, outputs=[leaderboard]) | |
search_btn.click(search_leaderboard, inputs=[search_bar], outputs=[leaderboard]) | |
search_bar.submit(search_leaderboard, inputs=[search_bar], outputs=[leaderboard]) | |
app.launch() |