MohamedRashad's picture
Merge branch 'main' of hf.co:spaces/MohamedRashad/timm-leaderboard
495cd4e
import gradio as gr
import pandas as pd
from fuzzywuzzy import fuzz
def load_leaderboard():
imagenet_df = pd.read_csv('https://raw.githubusercontent.com/huggingface/pytorch-image-models/main/results/results-imagenet.csv')
imagenet_real_df = pd.read_csv('https://raw.githubusercontent.com/huggingface/pytorch-image-models/main/results/results-imagenet-real.csv')
imagenetv2_df = pd.read_csv('https://raw.githubusercontent.com/huggingface/pytorch-image-models/main/results/results-imagenetv2-matched-frequency.csv')
sketch_df = pd.read_csv('https://raw.githubusercontent.com/huggingface/pytorch-image-models/main/results/results-sketch.csv')
imagenet_a_df = pd.read_csv('https://raw.githubusercontent.com/huggingface/pytorch-image-models/main/results/results-imagenet-a.csv')
imagenet_r_df = pd.read_csv('https://raw.githubusercontent.com/huggingface/pytorch-image-models/main/results/results-imagenet-r.csv')
# columns to remove from each dataframe
remove_column_names = ["top1_err", "top5_err", "top1_diff", "top5_diff", "rank_diff"]
for remove_column_name in remove_column_names:
if remove_column_name in imagenet_df.columns:
imagenet_df = imagenet_df.drop(columns=remove_column_name)
if remove_column_name in imagenet_real_df.columns:
imagenet_real_df = imagenet_real_df.drop(columns=remove_column_name)
if remove_column_name in imagenetv2_df.columns:
imagenetv2_df = imagenetv2_df.drop(columns=remove_column_name)
if remove_column_name in sketch_df.columns:
sketch_df = sketch_df.drop(columns=remove_column_name)
if remove_column_name in imagenet_a_df.columns:
imagenet_a_df = imagenet_a_df.drop(columns=remove_column_name)
if remove_column_name in imagenet_r_df.columns:
imagenet_r_df = imagenet_r_df.drop(columns=remove_column_name)
# Rename top1 and top5 columns to the name of the dataframe+top1/top5
imagenet_df = imagenet_df.rename(columns={"top1": "imagenet_top1", "top5": "imagenet_top5"})
imagenet_real_df = imagenet_real_df.rename(columns={"top1": "imagenet_real_top1", "top5": "imagenet_real_top5"})
imagenetv2_df = imagenetv2_df.rename(columns={"top1": "imagenetv2_top1", "top5": "imagenetv2_top5"})
sketch_df = sketch_df.rename(columns={"top1": "sketch_top1", "top5": "sketch_top5"})
imagenet_a_df = imagenet_a_df.rename(columns={"top1": "imagenet_a_top1", "top5": "imagenet_a_top5"})
imagenet_r_df = imagenet_r_df.rename(columns={"top1": "imagenet_r_top1", "top5": "imagenet_r_top5"})
# Merge all dataframes
result = pd.merge(imagenet_df, imagenet_real_df, on=['model', 'param_count', 'img_size', 'crop_pct', 'interpolation'], how='outer')
result = pd.merge(result, imagenetv2_df, on=['model', 'param_count', 'img_size', 'crop_pct', 'interpolation'], how='outer')
result = pd.merge(result, sketch_df, on=['model', 'param_count', 'img_size', 'crop_pct', 'interpolation'], how='outer')
result = pd.merge(result, imagenet_a_df, on=['model', 'param_count', 'img_size', 'crop_pct', 'interpolation'], how='outer')
result = pd.merge(result, imagenet_r_df, on=['model', 'param_count', 'img_size', 'crop_pct', 'interpolation'], how='outer')
# Average top1 and top5 and add the average column after `model` column
result['average_top1'] = result[['imagenet_top1', 'imagenet_real_top1', 'imagenetv2_top1', 'sketch_top1', 'imagenet_a_top1', 'imagenet_r_top1']].mean(axis=1)
result['average_top5'] = result[['imagenet_top5', 'imagenet_real_top5', 'imagenetv2_top5', 'sketch_top5', 'imagenet_a_top5', 'imagenet_r_top5']].mean(axis=1)
result = result[['model', 'average_top1', 'average_top5', 'param_count', 'img_size', 'crop_pct', 'interpolation', 'imagenet_top1', 'imagenet_top5', 'imagenet_real_top1', 'imagenet_real_top5', 'imagenetv2_top1', 'imagenetv2_top5', 'sketch_top1', 'sketch_top5', 'imagenet_a_top1', 'imagenet_a_top5', 'imagenet_r_top1', 'imagenet_r_top5']]
result = result.sort_values(by='average_top1', ascending=False)
# Round the values to 3 decimal places
result = result.round(3)
return result
global df
df = load_leaderboard()
def search_leaderboard(model_name):
if not model_name:
return df
threshold = 95 # You can adjust this value to make the search more or less strict
def calculate_similarity(row):
similarity = fuzz.partial_ratio(model_name.lower(), row['model'].lower())
return similarity if similarity >= threshold else 0
# Add a new column for similarity scores
df['similarity'] = df.apply(calculate_similarity, axis=1)
# Filter and sort the dataframe
filtered_df = df[df['similarity'] > 0].sort_values('similarity', ascending=False)
# Remove the similarity column before returning
filtered_df = filtered_df.drop('similarity', axis=1)
return filtered_df
with gr.Blocks("Timm Leaderboard") as app:
gr.HTML("<center><h1>PyTorch Image Models Leaderboard</h1></center>")
gr.HTML("<p>This leaderboard is based on the results of the models from the <a href='https://github.com/huggingface/pytorch-image-models'>PyTorch Image Models</a> repository.</p>")
with gr.Row():
search_bar = gr.Textbox(lines=1, label="Search Model (You can press Enter to Search)", placeholder="Search for a model", scale=4)
search_btn = gr.Button(value="Search", variant="primary", scale=1)
leaderboard = gr.Dataframe(df)
refresh_button = gr.Button(value="Refresh Leaderboard", variant="primary")
refresh_button.click(load_leaderboard, outputs=[leaderboard])
search_btn.click(search_leaderboard, inputs=[search_bar], outputs=[leaderboard])
search_bar.submit(search_leaderboard, inputs=[search_bar], outputs=[leaderboard])
app.launch()