BookApp / LLM_Helper.py
Mr-TD's picture
Upload files
6f27a32
raw
history blame
2.75 kB
from langchain.llms import OpenAI, GooglePalm
from Api_Key import openapi_key,google_plam
from langchain.prompts import PromptTemplate
from langchain.chains import LLMChain
import PromptHelper
google_llm = GooglePalm(google_api_key=google_plam,temperature=0.1)
def Book_Name1(main_cat):
"""
Prompt P1
Return only Education Related
"""
prompt_template_name = PromptTemplate(
input_variables=['main_cat'],
template=PromptHelper.P1
)
chain = LLMChain(llm=google_llm, prompt=prompt_template_name)
response = chain.run(main_cat=main_cat)
return response
def Book_Name1_1(main_cat):
"""
Prompt P1_1
Return only Education Related for given year
"""
prompt_template_name = PromptTemplate(
input_variables=['main_cat'],
template=PromptHelper.P1_1
)
chain = LLMChain(llm=google_llm, prompt=prompt_template_name)
response = chain.run(main_cat=main_cat)
return response
def Book_Name2(main_cat,topic):
"""
Prompt P2
Return only Education Related for ant specific topic
"""
prompt_template_name = PromptTemplate(
input_variables=['main_cat', 'topic'],
template=PromptHelper.P2
)
chain = LLMChain(llm=google_llm, prompt=prompt_template_name)
response = chain.run(main_cat=main_cat,topic=topic)
return response
def Book_Name3(main_cat,topic,p_year):
"""
Prompt P3
Return only Education Related for ant specific topic for given year
"""
prompt_template_name = PromptTemplate(
input_variables=['main_cat', 'topic', 'p_year'],
template=PromptHelper.P3
)
chain = LLMChain(llm=google_llm, prompt=prompt_template_name)
response = chain.run(main_cat=main_cat,topic=topic,p_year=p_year)
return response
def Book_Name4(main_cat,genres):
"""
Prompt P4
Return only Non Education Related for any specific list of genres
"""
prompt_template_name = PromptTemplate(
input_variables=['main_cat', 'genres'],
template=PromptHelper.P4
)
chain = LLMChain(llm=google_llm, prompt=prompt_template_name)
response = chain.run(main_cat=main_cat,genres=genres)
return response
def Book_Name5(main_cat,genres,p_year):
"""
Prompt P5
Return only Non Education Related for any specific list of genres for given year
"""
prompt_template_name = PromptTemplate(
input_variables=['main_cat', 'list_sub_cat', 'p_year'],
template=PromptHelper.P5
)
chain = LLMChain(llm=google_llm, prompt=prompt_template_name)
response = chain.run(main_cat=main_cat,genres=genres,p_year=p_year)
return response
if __name__ == "__main__":
print(Book_Name5('Non Education', 'Horror', '2002'))