File size: 39,865 Bytes
113c29e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
import threading
from modules.patch import PatchSettings, patch_settings, patch_all

patch_all()

class AsyncTask:
    def __init__(self, args):
        self.args = args
        self.yields = []
        self.results = []
        self.last_stop = False
        self.processing = False


async_tasks = []


def worker():
    global async_tasks

    import os
    import traceback
    import math
    import numpy as np
    import cv2
    import torch
    import time
    import shared
    import random
    import copy
    import modules.default_pipeline as pipeline
    import modules.core as core
    import modules.flags as flags
    import modules.config
    import modules.patch
    import ldm_patched.modules.model_management
    import extras.preprocessors as preprocessors
    import modules.inpaint_worker as inpaint_worker
    import modules.constants as constants
    import extras.ip_adapter as ip_adapter
    import extras.face_crop
    import fooocus_version
    import args_manager

    from modules.sdxl_styles import apply_style, apply_wildcards, fooocus_expansion, apply_arrays
    from modules.private_logger import log
    from extras.expansion import safe_str
    from modules.util import remove_empty_str, HWC3, resize_image, \
        get_image_shape_ceil, set_image_shape_ceil, get_shape_ceil, resample_image, erode_or_dilate, ordinal_suffix
    from modules.upscaler import perform_upscale
    from modules.flags import Performance
    from modules.meta_parser import get_metadata_parser, MetadataScheme

    pid = os.getpid()
    print(f'Started worker with PID {pid}')

    try:
        async_gradio_app = shared.gradio_root
        flag = f'''App started successful. Use the app with {str(async_gradio_app.local_url)} or {str(async_gradio_app.server_name)}:{str(async_gradio_app.server_port)}'''
        if async_gradio_app.share:
            flag += f''' or {async_gradio_app.share_url}'''
        print(flag)
    except Exception as e:
        print(e)

    def progressbar(async_task, number, text):
        print(f'[Fooocus] {text}')
        async_task.yields.append(['preview', (number, text, None)])

    def yield_result(async_task, imgs, do_not_show_finished_images=False):
        if not isinstance(imgs, list):
            imgs = [imgs]

        async_task.results = async_task.results + imgs

        if do_not_show_finished_images:
            return

        async_task.yields.append(['results', async_task.results])
        return

    def build_image_wall(async_task):
        results = []

        if len(async_task.results) < 2:
            return

        for img in async_task.results:
            if isinstance(img, str) and os.path.exists(img):
                img = cv2.imread(img)
                img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)
            if not isinstance(img, np.ndarray):
                return
            if img.ndim != 3:
                return
            results.append(img)

        H, W, C = results[0].shape

        for img in results:
            Hn, Wn, Cn = img.shape
            if H != Hn:
                return
            if W != Wn:
                return
            if C != Cn:
                return

        cols = float(len(results)) ** 0.5
        cols = int(math.ceil(cols))
        rows = float(len(results)) / float(cols)
        rows = int(math.ceil(rows))

        wall = np.zeros(shape=(H * rows, W * cols, C), dtype=np.uint8)

        for y in range(rows):
            for x in range(cols):
                if y * cols + x < len(results):
                    img = results[y * cols + x]
                    wall[y * H:y * H + H, x * W:x * W + W, :] = img

        # must use deep copy otherwise gradio is super laggy. Do not use list.append() .
        async_task.results = async_task.results + [wall]
        return

    def apply_enabled_loras(loras):
        enabled_loras = []
        for lora_enabled, lora_model, lora_weight in loras:
            if lora_enabled:
                enabled_loras.append([lora_model, lora_weight])

        return enabled_loras

    @torch.no_grad()
    @torch.inference_mode()
    def handler(async_task):
        execution_start_time = time.perf_counter()
        async_task.processing = True

        args = async_task.args
        args.reverse()

        prompt = args.pop()
        negative_prompt = args.pop()
        style_selections = args.pop()
        performance_selection = Performance(args.pop())
        aspect_ratios_selection = args.pop()
        image_number = args.pop()
        output_format = args.pop()
        image_seed = args.pop()
        sharpness = args.pop()
        guidance_scale = args.pop()
        base_model_name = args.pop()
        refiner_model_name = args.pop()
        refiner_switch = args.pop()
        loras = apply_enabled_loras([[bool(args.pop()), str(args.pop()), float(args.pop()), ] for _ in range(modules.config.default_max_lora_number)])
        input_image_checkbox = args.pop()
        current_tab = args.pop()
        uov_method = args.pop()
        uov_input_image = args.pop()
        outpaint_selections = args.pop()
        inpaint_input_image = args.pop()
        inpaint_additional_prompt = args.pop()
        inpaint_mask_image_upload = args.pop()

        disable_preview = args.pop()
        disable_intermediate_results = args.pop()
        disable_seed_increment = args.pop()
        adm_scaler_positive = args.pop()
        adm_scaler_negative = args.pop()
        adm_scaler_end = args.pop()
        adaptive_cfg = args.pop()
        sampler_name = args.pop()
        scheduler_name = args.pop()
        overwrite_step = args.pop()
        overwrite_switch = args.pop()
        overwrite_width = args.pop()
        overwrite_height = args.pop()
        overwrite_vary_strength = args.pop()
        overwrite_upscale_strength = args.pop()
        mixing_image_prompt_and_vary_upscale = args.pop()
        mixing_image_prompt_and_inpaint = args.pop()
        debugging_cn_preprocessor = args.pop()
        skipping_cn_preprocessor = args.pop()
        canny_low_threshold = args.pop()
        canny_high_threshold = args.pop()
        refiner_swap_method = args.pop()
        controlnet_softness = args.pop()
        freeu_enabled = args.pop()
        freeu_b1 = args.pop()
        freeu_b2 = args.pop()
        freeu_s1 = args.pop()
        freeu_s2 = args.pop()
        debugging_inpaint_preprocessor = args.pop()
        inpaint_disable_initial_latent = args.pop()
        inpaint_engine = args.pop()
        inpaint_strength = args.pop()
        inpaint_respective_field = args.pop()
        inpaint_mask_upload_checkbox = args.pop()
        invert_mask_checkbox = args.pop()
        inpaint_erode_or_dilate = args.pop()

        save_metadata_to_images = args.pop() if not args_manager.args.disable_metadata else False
        metadata_scheme = MetadataScheme(args.pop()) if not args_manager.args.disable_metadata else MetadataScheme.FOOOCUS

        cn_tasks = {x: [] for x in flags.ip_list}
        for _ in range(flags.controlnet_image_count):
            cn_img = args.pop()
            cn_stop = args.pop()
            cn_weight = args.pop()
            cn_type = args.pop()
            if cn_img is not None:
                cn_tasks[cn_type].append([cn_img, cn_stop, cn_weight])

        outpaint_selections = [o.lower() for o in outpaint_selections]
        base_model_additional_loras = []
        raw_style_selections = copy.deepcopy(style_selections)
        uov_method = uov_method.lower()

        if fooocus_expansion in style_selections:
            use_expansion = True
            style_selections.remove(fooocus_expansion)
        else:
            use_expansion = False

        use_style = len(style_selections) > 0

        if base_model_name == refiner_model_name:
            print(f'Refiner disabled because base model and refiner are same.')
            refiner_model_name = 'None'

        steps = performance_selection.steps()

        if performance_selection == Performance.EXTREME_SPEED:
            print('Enter LCM mode.')
            progressbar(async_task, 1, 'Downloading LCM components ...')
            loras += [(modules.config.downloading_sdxl_lcm_lora(), 1.0)]

            if refiner_model_name != 'None':
                print(f'Refiner disabled in LCM mode.')

            refiner_model_name = 'None'
            sampler_name = 'lcm'
            scheduler_name = 'lcm'
            sharpness = 0.0
            guidance_scale = 1.0
            adaptive_cfg = 1.0
            refiner_switch = 1.0
            adm_scaler_positive = 1.0
            adm_scaler_negative = 1.0
            adm_scaler_end = 0.0

        print(f'[Parameters] Adaptive CFG = {adaptive_cfg}')
        print(f'[Parameters] Sharpness = {sharpness}')
        print(f'[Parameters] ControlNet Softness = {controlnet_softness}')
        print(f'[Parameters] ADM Scale = '
              f'{adm_scaler_positive} : '
              f'{adm_scaler_negative} : '
              f'{adm_scaler_end}')

        patch_settings[pid] = PatchSettings(
            sharpness,
            adm_scaler_end,
            adm_scaler_positive,
            adm_scaler_negative,
            controlnet_softness,
            adaptive_cfg
        )

        cfg_scale = float(guidance_scale)
        print(f'[Parameters] CFG = {cfg_scale}')

        initial_latent = None
        denoising_strength = 1.0
        tiled = False

        width, height = aspect_ratios_selection.replace('×', ' ').split(' ')[:2]
        width, height = int(width), int(height)

        skip_prompt_processing = False

        inpaint_worker.current_task = None
        inpaint_parameterized = inpaint_engine != 'None'
        inpaint_image = None
        inpaint_mask = None
        inpaint_head_model_path = None

        use_synthetic_refiner = False

        controlnet_canny_path = None
        controlnet_cpds_path = None
        clip_vision_path, ip_negative_path, ip_adapter_path, ip_adapter_face_path = None, None, None, None

        seed = int(image_seed)
        print(f'[Parameters] Seed = {seed}')

        goals = []
        tasks = []

        if input_image_checkbox:
            if (current_tab == 'uov' or (
                    current_tab == 'ip' and mixing_image_prompt_and_vary_upscale)) \
                    and uov_method != flags.disabled and uov_input_image is not None:
                uov_input_image = HWC3(uov_input_image)
                if 'vary' in uov_method:
                    goals.append('vary')
                elif 'upscale' in uov_method:
                    goals.append('upscale')
                    if 'fast' in uov_method:
                        skip_prompt_processing = True
                    else:
                        steps = performance_selection.steps_uov()

                    progressbar(async_task, 1, 'Downloading upscale models ...')
                    modules.config.downloading_upscale_model()
            if (current_tab == 'inpaint' or (
                    current_tab == 'ip' and mixing_image_prompt_and_inpaint)) \
                    and isinstance(inpaint_input_image, dict):
                inpaint_image = inpaint_input_image['image']
                inpaint_mask = inpaint_input_image['mask'][:, :, 0]

                if inpaint_mask_upload_checkbox:
                    if isinstance(inpaint_mask_image_upload, np.ndarray):
                        if inpaint_mask_image_upload.ndim == 3:
                            H, W, C = inpaint_image.shape
                            inpaint_mask_image_upload = resample_image(inpaint_mask_image_upload, width=W, height=H)
                            inpaint_mask_image_upload = np.mean(inpaint_mask_image_upload, axis=2)
                            inpaint_mask_image_upload = (inpaint_mask_image_upload > 127).astype(np.uint8) * 255
                            inpaint_mask = np.maximum(inpaint_mask, inpaint_mask_image_upload)

                if int(inpaint_erode_or_dilate) != 0:
                    inpaint_mask = erode_or_dilate(inpaint_mask, inpaint_erode_or_dilate)

                if invert_mask_checkbox:
                    inpaint_mask = 255 - inpaint_mask

                inpaint_image = HWC3(inpaint_image)
                if isinstance(inpaint_image, np.ndarray) and isinstance(inpaint_mask, np.ndarray) \
                        and (np.any(inpaint_mask > 127) or len(outpaint_selections) > 0):
                    progressbar(async_task, 1, 'Downloading upscale models ...')
                    modules.config.downloading_upscale_model()
                    if inpaint_parameterized:
                        progressbar(async_task, 1, 'Downloading inpainter ...')
                        inpaint_head_model_path, inpaint_patch_model_path = modules.config.downloading_inpaint_models(
                            inpaint_engine)
                        base_model_additional_loras += [(inpaint_patch_model_path, 1.0)]
                        print(f'[Inpaint] Current inpaint model is {inpaint_patch_model_path}')
                        if refiner_model_name == 'None':
                            use_synthetic_refiner = True
                            refiner_switch = 0.5
                    else:
                        inpaint_head_model_path, inpaint_patch_model_path = None, None
                        print(f'[Inpaint] Parameterized inpaint is disabled.')
                    if inpaint_additional_prompt != '':
                        if prompt == '':
                            prompt = inpaint_additional_prompt
                        else:
                            prompt = inpaint_additional_prompt + '\n' + prompt
                    goals.append('inpaint')
            if current_tab == 'ip' or \
                    mixing_image_prompt_and_vary_upscale or \
                    mixing_image_prompt_and_inpaint:
                goals.append('cn')
                progressbar(async_task, 1, 'Downloading control models ...')
                if len(cn_tasks[flags.cn_canny]) > 0:
                    controlnet_canny_path = modules.config.downloading_controlnet_canny()
                if len(cn_tasks[flags.cn_cpds]) > 0:
                    controlnet_cpds_path = modules.config.downloading_controlnet_cpds()
                if len(cn_tasks[flags.cn_ip]) > 0:
                    clip_vision_path, ip_negative_path, ip_adapter_path = modules.config.downloading_ip_adapters('ip')
                if len(cn_tasks[flags.cn_ip_face]) > 0:
                    clip_vision_path, ip_negative_path, ip_adapter_face_path = modules.config.downloading_ip_adapters(
                        'face')
                progressbar(async_task, 1, 'Loading control models ...')

        # Load or unload CNs
        pipeline.refresh_controlnets([controlnet_canny_path, controlnet_cpds_path])
        ip_adapter.load_ip_adapter(clip_vision_path, ip_negative_path, ip_adapter_path)
        ip_adapter.load_ip_adapter(clip_vision_path, ip_negative_path, ip_adapter_face_path)

        if overwrite_step > 0:
            steps = overwrite_step

        switch = int(round(steps * refiner_switch))

        if overwrite_switch > 0:
            switch = overwrite_switch

        if overwrite_width > 0:
            width = overwrite_width

        if overwrite_height > 0:
            height = overwrite_height

        print(f'[Parameters] Sampler = {sampler_name} - {scheduler_name}')
        print(f'[Parameters] Steps = {steps} - {switch}')

        progressbar(async_task, 1, 'Initializing ...')

        if not skip_prompt_processing:

            prompts = remove_empty_str([safe_str(p) for p in prompt.splitlines()], default='')
            negative_prompts = remove_empty_str([safe_str(p) for p in negative_prompt.splitlines()], default='')

            prompt = prompts[0]
            negative_prompt = negative_prompts[0]

            if prompt == '':
                # disable expansion when empty since it is not meaningful and influences image prompt
                use_expansion = False

            extra_positive_prompts = prompts[1:] if len(prompts) > 1 else []
            extra_negative_prompts = negative_prompts[1:] if len(negative_prompts) > 1 else []

            progressbar(async_task, 3, 'Loading models ...')
            pipeline.refresh_everything(refiner_model_name=refiner_model_name, base_model_name=base_model_name,
                                        loras=loras, base_model_additional_loras=base_model_additional_loras,
                                        use_synthetic_refiner=use_synthetic_refiner)

            progressbar(async_task, 3, 'Processing prompts ...')
            tasks = []
            
            for i in range(image_number):
                if disable_seed_increment:
                    task_seed = seed
                else:
                    task_seed = (seed + i) % (constants.MAX_SEED + 1)  # randint is inclusive, % is not

                task_rng = random.Random(task_seed)  # may bind to inpaint noise in the future
                task_prompt = apply_wildcards(prompt, task_rng)
                task_prompt = apply_arrays(task_prompt, i)
                task_negative_prompt = apply_wildcards(negative_prompt, task_rng)
                task_extra_positive_prompts = [apply_wildcards(pmt, task_rng) for pmt in extra_positive_prompts]
                task_extra_negative_prompts = [apply_wildcards(pmt, task_rng) for pmt in extra_negative_prompts]

                positive_basic_workloads = []
                negative_basic_workloads = []

                if use_style:
                    for s in style_selections:
                        p, n = apply_style(s, positive=task_prompt)
                        positive_basic_workloads = positive_basic_workloads + p
                        negative_basic_workloads = negative_basic_workloads + n
                else:
                    positive_basic_workloads.append(task_prompt)

                negative_basic_workloads.append(task_negative_prompt)  # Always use independent workload for negative.

                positive_basic_workloads = positive_basic_workloads + task_extra_positive_prompts
                negative_basic_workloads = negative_basic_workloads + task_extra_negative_prompts

                positive_basic_workloads = remove_empty_str(positive_basic_workloads, default=task_prompt)
                negative_basic_workloads = remove_empty_str(negative_basic_workloads, default=task_negative_prompt)

                tasks.append(dict(
                    task_seed=task_seed,
                    task_prompt=task_prompt,
                    task_negative_prompt=task_negative_prompt,
                    positive=positive_basic_workloads,
                    negative=negative_basic_workloads,
                    expansion='',
                    c=None,
                    uc=None,
                    positive_top_k=len(positive_basic_workloads),
                    negative_top_k=len(negative_basic_workloads),
                    log_positive_prompt='\n'.join([task_prompt] + task_extra_positive_prompts),
                    log_negative_prompt='\n'.join([task_negative_prompt] + task_extra_negative_prompts),
                ))

            if use_expansion:
                for i, t in enumerate(tasks):
                    progressbar(async_task, 5, f'Preparing Fooocus text #{i + 1} ...')
                    expansion = pipeline.final_expansion(t['task_prompt'], t['task_seed'])
                    print(f'[Prompt Expansion] {expansion}')
                    t['expansion'] = expansion
                    t['positive'] = copy.deepcopy(t['positive']) + [expansion]  # Deep copy.

            for i, t in enumerate(tasks):
                progressbar(async_task, 7, f'Encoding positive #{i + 1} ...')
                t['c'] = pipeline.clip_encode(texts=t['positive'], pool_top_k=t['positive_top_k'])

            for i, t in enumerate(tasks):
                if abs(float(cfg_scale) - 1.0) < 1e-4:
                    t['uc'] = pipeline.clone_cond(t['c'])
                else:
                    progressbar(async_task, 10, f'Encoding negative #{i + 1} ...')
                    t['uc'] = pipeline.clip_encode(texts=t['negative'], pool_top_k=t['negative_top_k'])

        if len(goals) > 0:
            progressbar(async_task, 13, 'Image processing ...')

        if 'vary' in goals:
            if 'subtle' in uov_method:
                denoising_strength = 0.5
            if 'strong' in uov_method:
                denoising_strength = 0.85
            if overwrite_vary_strength > 0:
                denoising_strength = overwrite_vary_strength

            shape_ceil = get_image_shape_ceil(uov_input_image)
            if shape_ceil < 1024:
                print(f'[Vary] Image is resized because it is too small.')
                shape_ceil = 1024
            elif shape_ceil > 2048:
                print(f'[Vary] Image is resized because it is too big.')
                shape_ceil = 2048

            uov_input_image = set_image_shape_ceil(uov_input_image, shape_ceil)

            initial_pixels = core.numpy_to_pytorch(uov_input_image)
            progressbar(async_task, 13, 'VAE encoding ...')

            candidate_vae, _ = pipeline.get_candidate_vae(
                steps=steps,
                switch=switch,
                denoise=denoising_strength,
                refiner_swap_method=refiner_swap_method
            )

            initial_latent = core.encode_vae(vae=candidate_vae, pixels=initial_pixels)
            B, C, H, W = initial_latent['samples'].shape
            width = W * 8
            height = H * 8
            print(f'Final resolution is {str((height, width))}.')

        if 'upscale' in goals:
            H, W, C = uov_input_image.shape
            progressbar(async_task, 13, f'Upscaling image from {str((H, W))} ...')
            uov_input_image = perform_upscale(uov_input_image)
            print(f'Image upscaled.')

            if '1.5x' in uov_method:
                f = 1.5
            elif '2x' in uov_method:
                f = 2.0
            else:
                f = 1.0

            shape_ceil = get_shape_ceil(H * f, W * f)

            if shape_ceil < 1024:
                print(f'[Upscale] Image is resized because it is too small.')
                uov_input_image = set_image_shape_ceil(uov_input_image, 1024)
                shape_ceil = 1024
            else:
                uov_input_image = resample_image(uov_input_image, width=W * f, height=H * f)

            image_is_super_large = shape_ceil > 2800

            if 'fast' in uov_method:
                direct_return = True
            elif image_is_super_large:
                print('Image is too large. Directly returned the SR image. '
                      'Usually directly return SR image at 4K resolution '
                      'yields better results than SDXL diffusion.')
                direct_return = True
            else:
                direct_return = False

            if direct_return:
                d = [('Upscale (Fast)', 'upscale_fast', '2x')]
                uov_input_image_path = log(uov_input_image, d, output_format=output_format)
                yield_result(async_task, uov_input_image_path, do_not_show_finished_images=True)
                return

            tiled = True
            denoising_strength = 0.382

            if overwrite_upscale_strength > 0:
                denoising_strength = overwrite_upscale_strength

            initial_pixels = core.numpy_to_pytorch(uov_input_image)
            progressbar(async_task, 13, 'VAE encoding ...')

            candidate_vae, _ = pipeline.get_candidate_vae(
                steps=steps,
                switch=switch,
                denoise=denoising_strength,
                refiner_swap_method=refiner_swap_method
            )

            initial_latent = core.encode_vae(
                vae=candidate_vae,
                pixels=initial_pixels, tiled=True)
            B, C, H, W = initial_latent['samples'].shape
            width = W * 8
            height = H * 8
            print(f'Final resolution is {str((height, width))}.')

        if 'inpaint' in goals:
            if len(outpaint_selections) > 0:
                H, W, C = inpaint_image.shape
                if 'top' in outpaint_selections:
                    inpaint_image = np.pad(inpaint_image, [[int(H * 0.3), 0], [0, 0], [0, 0]], mode='edge')
                    inpaint_mask = np.pad(inpaint_mask, [[int(H * 0.3), 0], [0, 0]], mode='constant',
                                          constant_values=255)
                if 'bottom' in outpaint_selections:
                    inpaint_image = np.pad(inpaint_image, [[0, int(H * 0.3)], [0, 0], [0, 0]], mode='edge')
                    inpaint_mask = np.pad(inpaint_mask, [[0, int(H * 0.3)], [0, 0]], mode='constant',
                                          constant_values=255)

                H, W, C = inpaint_image.shape
                if 'left' in outpaint_selections:
                    inpaint_image = np.pad(inpaint_image, [[0, 0], [int(H * 0.3), 0], [0, 0]], mode='edge')
                    inpaint_mask = np.pad(inpaint_mask, [[0, 0], [int(H * 0.3), 0]], mode='constant',
                                          constant_values=255)
                if 'right' in outpaint_selections:
                    inpaint_image = np.pad(inpaint_image, [[0, 0], [0, int(H * 0.3)], [0, 0]], mode='edge')
                    inpaint_mask = np.pad(inpaint_mask, [[0, 0], [0, int(H * 0.3)]], mode='constant',
                                          constant_values=255)

                inpaint_image = np.ascontiguousarray(inpaint_image.copy())
                inpaint_mask = np.ascontiguousarray(inpaint_mask.copy())
                inpaint_strength = 1.0
                inpaint_respective_field = 1.0

            denoising_strength = inpaint_strength

            inpaint_worker.current_task = inpaint_worker.InpaintWorker(
                image=inpaint_image,
                mask=inpaint_mask,
                use_fill=denoising_strength > 0.99,
                k=inpaint_respective_field
            )

            if debugging_inpaint_preprocessor:
                yield_result(async_task, inpaint_worker.current_task.visualize_mask_processing(),
                             do_not_show_finished_images=True)
                return

            progressbar(async_task, 13, 'VAE Inpaint encoding ...')

            inpaint_pixel_fill = core.numpy_to_pytorch(inpaint_worker.current_task.interested_fill)
            inpaint_pixel_image = core.numpy_to_pytorch(inpaint_worker.current_task.interested_image)
            inpaint_pixel_mask = core.numpy_to_pytorch(inpaint_worker.current_task.interested_mask)

            candidate_vae, candidate_vae_swap = pipeline.get_candidate_vae(
                steps=steps,
                switch=switch,
                denoise=denoising_strength,
                refiner_swap_method=refiner_swap_method
            )

            latent_inpaint, latent_mask = core.encode_vae_inpaint(
                mask=inpaint_pixel_mask,
                vae=candidate_vae,
                pixels=inpaint_pixel_image)

            latent_swap = None
            if candidate_vae_swap is not None:
                progressbar(async_task, 13, 'VAE SD15 encoding ...')
                latent_swap = core.encode_vae(
                    vae=candidate_vae_swap,
                    pixels=inpaint_pixel_fill)['samples']

            progressbar(async_task, 13, 'VAE encoding ...')
            latent_fill = core.encode_vae(
                vae=candidate_vae,
                pixels=inpaint_pixel_fill)['samples']

            inpaint_worker.current_task.load_latent(
                latent_fill=latent_fill, latent_mask=latent_mask, latent_swap=latent_swap)

            if inpaint_parameterized:
                pipeline.final_unet = inpaint_worker.current_task.patch(
                    inpaint_head_model_path=inpaint_head_model_path,
                    inpaint_latent=latent_inpaint,
                    inpaint_latent_mask=latent_mask,
                    model=pipeline.final_unet
                )

            if not inpaint_disable_initial_latent:
                initial_latent = {'samples': latent_fill}

            B, C, H, W = latent_fill.shape
            height, width = H * 8, W * 8
            final_height, final_width = inpaint_worker.current_task.image.shape[:2]
            print(f'Final resolution is {str((final_height, final_width))}, latent is {str((height, width))}.')

        if 'cn' in goals:
            for task in cn_tasks[flags.cn_canny]:
                cn_img, cn_stop, cn_weight = task
                cn_img = resize_image(HWC3(cn_img), width=width, height=height)

                if not skipping_cn_preprocessor:
                    cn_img = preprocessors.canny_pyramid(cn_img, canny_low_threshold, canny_high_threshold)

                cn_img = HWC3(cn_img)
                task[0] = core.numpy_to_pytorch(cn_img)
                if debugging_cn_preprocessor:
                    yield_result(async_task, cn_img, do_not_show_finished_images=True)
                    return
            for task in cn_tasks[flags.cn_cpds]:
                cn_img, cn_stop, cn_weight = task
                cn_img = resize_image(HWC3(cn_img), width=width, height=height)

                if not skipping_cn_preprocessor:
                    cn_img = preprocessors.cpds(cn_img)

                cn_img = HWC3(cn_img)
                task[0] = core.numpy_to_pytorch(cn_img)
                if debugging_cn_preprocessor:
                    yield_result(async_task, cn_img, do_not_show_finished_images=True)
                    return
            for task in cn_tasks[flags.cn_ip]:
                cn_img, cn_stop, cn_weight = task
                cn_img = HWC3(cn_img)

                # https://github.com/tencent-ailab/IP-Adapter/blob/d580c50a291566bbf9fc7ac0f760506607297e6d/README.md?plain=1#L75
                cn_img = resize_image(cn_img, width=224, height=224, resize_mode=0)

                task[0] = ip_adapter.preprocess(cn_img, ip_adapter_path=ip_adapter_path)
                if debugging_cn_preprocessor:
                    yield_result(async_task, cn_img, do_not_show_finished_images=True)
                    return
            for task in cn_tasks[flags.cn_ip_face]:
                cn_img, cn_stop, cn_weight = task
                cn_img = HWC3(cn_img)

                if not skipping_cn_preprocessor:
                    cn_img = extras.face_crop.crop_image(cn_img)

                # https://github.com/tencent-ailab/IP-Adapter/blob/d580c50a291566bbf9fc7ac0f760506607297e6d/README.md?plain=1#L75
                cn_img = resize_image(cn_img, width=224, height=224, resize_mode=0)

                task[0] = ip_adapter.preprocess(cn_img, ip_adapter_path=ip_adapter_face_path)
                if debugging_cn_preprocessor:
                    yield_result(async_task, cn_img, do_not_show_finished_images=True)
                    return

            all_ip_tasks = cn_tasks[flags.cn_ip] + cn_tasks[flags.cn_ip_face]

            if len(all_ip_tasks) > 0:
                pipeline.final_unet = ip_adapter.patch_model(pipeline.final_unet, all_ip_tasks)

        if freeu_enabled:
            print(f'FreeU is enabled!')
            pipeline.final_unet = core.apply_freeu(
                pipeline.final_unet,
                freeu_b1,
                freeu_b2,
                freeu_s1,
                freeu_s2
            )

        all_steps = steps * image_number

        print(f'[Parameters] Denoising Strength = {denoising_strength}')

        if isinstance(initial_latent, dict) and 'samples' in initial_latent:
            log_shape = initial_latent['samples'].shape
        else:
            log_shape = f'Image Space {(height, width)}'

        print(f'[Parameters] Initial Latent shape: {log_shape}')

        preparation_time = time.perf_counter() - execution_start_time
        print(f'Preparation time: {preparation_time:.2f} seconds')

        final_sampler_name = sampler_name
        final_scheduler_name = scheduler_name

        if scheduler_name == 'lcm':
            final_scheduler_name = 'sgm_uniform'
            if pipeline.final_unet is not None:
                pipeline.final_unet = core.opModelSamplingDiscrete.patch(
                    pipeline.final_unet,
                    sampling='lcm',
                    zsnr=False)[0]
            if pipeline.final_refiner_unet is not None:
                pipeline.final_refiner_unet = core.opModelSamplingDiscrete.patch(
                    pipeline.final_refiner_unet,
                    sampling='lcm',
                    zsnr=False)[0]
            print('Using lcm scheduler.')

        async_task.yields.append(['preview', (13, 'Moving model to GPU ...', None)])

        def callback(step, x0, x, total_steps, y):
            done_steps = current_task_id * steps + step
            async_task.yields.append(['preview', (
                int(15.0 + 85.0 * float(done_steps) / float(all_steps)),
                f'Step {step}/{total_steps} in the {current_task_id + 1}{ordinal_suffix(current_task_id + 1)} Sampling', y)])

        for current_task_id, task in enumerate(tasks):
            execution_start_time = time.perf_counter()

            try:
                if async_task.last_stop is not False:
                    ldm_patched.model_management.interrupt_current_processing()
                positive_cond, negative_cond = task['c'], task['uc']

                if 'cn' in goals:
                    for cn_flag, cn_path in [
                        (flags.cn_canny, controlnet_canny_path),
                        (flags.cn_cpds, controlnet_cpds_path)
                    ]:
                        for cn_img, cn_stop, cn_weight in cn_tasks[cn_flag]:
                            positive_cond, negative_cond = core.apply_controlnet(
                                positive_cond, negative_cond,
                                pipeline.loaded_ControlNets[cn_path], cn_img, cn_weight, 0, cn_stop)

                imgs = pipeline.process_diffusion(
                    positive_cond=positive_cond,
                    negative_cond=negative_cond,
                    steps=steps,
                    switch=switch,
                    width=width,
                    height=height,
                    image_seed=task['task_seed'],
                    callback=callback,
                    sampler_name=final_sampler_name,
                    scheduler_name=final_scheduler_name,
                    latent=initial_latent,
                    denoise=denoising_strength,
                    tiled=tiled,
                    cfg_scale=cfg_scale,
                    refiner_swap_method=refiner_swap_method,
                    disable_preview=disable_preview
                )

                del task['c'], task['uc'], positive_cond, negative_cond  # Save memory

                if inpaint_worker.current_task is not None:
                    imgs = [inpaint_worker.current_task.post_process(x) for x in imgs]

                img_paths = []
                for x in imgs:
                    d = [('Prompt', 'prompt', task['log_positive_prompt']),
                         ('Negative Prompt', 'negative_prompt', task['log_negative_prompt']),
                         ('Fooocus V2 Expansion', 'prompt_expansion', task['expansion']),
                         ('Styles', 'styles', str(raw_style_selections)),
                         ('Performance', 'performance', performance_selection.value)]

                    if performance_selection.steps() != steps:
                        d.append(('Steps', 'steps', steps))

                    d += [('Resolution', 'resolution', str((width, height))),
                          ('Guidance Scale', 'guidance_scale', guidance_scale),
                          ('Sharpness', 'sharpness', sharpness),
                          ('ADM Guidance', 'adm_guidance', str((
                              modules.patch.patch_settings[pid].positive_adm_scale,
                              modules.patch.patch_settings[pid].negative_adm_scale,
                              modules.patch.patch_settings[pid].adm_scaler_end))),
                          ('Base Model', 'base_model', base_model_name),
                          ('Refiner Model', 'refiner_model', refiner_model_name),
                          ('Refiner Switch', 'refiner_switch', refiner_switch)]

                    if refiner_model_name != 'None':
                        if overwrite_switch > 0:
                            d.append(('Overwrite Switch', 'overwrite_switch', overwrite_switch))
                        if refiner_swap_method != flags.refiner_swap_method:
                            d.append(('Refiner Swap Method', 'refiner_swap_method', refiner_swap_method))
                    if modules.patch.patch_settings[pid].adaptive_cfg != modules.config.default_cfg_tsnr:
                        d.append(('CFG Mimicking from TSNR', 'adaptive_cfg', modules.patch.patch_settings[pid].adaptive_cfg))

                    d.append(('Sampler', 'sampler', sampler_name))
                    d.append(('Scheduler', 'scheduler', scheduler_name))
                    d.append(('Seed', 'seed', task['task_seed']))

                    if freeu_enabled:
                        d.append(('FreeU', 'freeu', str((freeu_b1, freeu_b2, freeu_s1, freeu_s2))))

                    for li, (n, w) in enumerate(loras):
                        if n != 'None':
                            d.append((f'LoRA {li + 1}', f'lora_combined_{li + 1}', f'{n} : {w}'))

                    metadata_parser = None
                    if save_metadata_to_images:
                        metadata_parser = modules.meta_parser.get_metadata_parser(metadata_scheme)
                        metadata_parser.set_data(task['log_positive_prompt'], task['positive'],
                                                 task['log_negative_prompt'], task['negative'],
                                                 steps, base_model_name, refiner_model_name, loras)
                    d.append(('Metadata Scheme', 'metadata_scheme', metadata_scheme.value if save_metadata_to_images else save_metadata_to_images))
                    d.append(('Version', 'version', 'Fooocus v' + fooocus_version.version))
                    img_paths.append(log(x, d, metadata_parser, output_format))

                yield_result(async_task, img_paths, do_not_show_finished_images=len(tasks) == 1 or disable_intermediate_results)
            except ldm_patched.modules.model_management.InterruptProcessingException as e:
                if async_task.last_stop == 'skip':
                    print('User skipped')
                    async_task.last_stop = False
                    continue
                else:
                    print('User stopped')
                    break

            execution_time = time.perf_counter() - execution_start_time
            print(f'Generating and saving time: {execution_time:.2f} seconds')
        async_task.processing = False
        return

    while True:
        time.sleep(0.01)
        if len(async_tasks) > 0:
            task = async_tasks.pop(0)
            generate_image_grid = task.args.pop(0)

            try:
                handler(task)
                if generate_image_grid:
                    build_image_wall(task)
                task.yields.append(['finish', task.results])
                pipeline.prepare_text_encoder(async_call=True)
            except:
                traceback.print_exc()
                task.yields.append(['finish', task.results])
            finally:
                if pid in modules.patch.patch_settings:
                    del modules.patch.patch_settings[pid]
    pass


threading.Thread(target=worker, daemon=True).start()