Spaces:
Runtime error
Runtime error
File size: 16,386 Bytes
113c29e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 |
import modules.core as core
import os
import torch
import modules.patch
import modules.config
import ldm_patched.modules.model_management
import ldm_patched.modules.latent_formats
import modules.inpaint_worker
import extras.vae_interpose as vae_interpose
from extras.expansion import FooocusExpansion
from ldm_patched.modules.model_base import SDXL, SDXLRefiner
from modules.sample_hijack import clip_separate
from modules.util import get_file_from_folder_list
model_base = core.StableDiffusionModel()
model_refiner = core.StableDiffusionModel()
final_expansion = None
final_unet = None
final_clip = None
final_vae = None
final_refiner_unet = None
final_refiner_vae = None
loaded_ControlNets = {}
@torch.no_grad()
@torch.inference_mode()
def refresh_controlnets(model_paths):
global loaded_ControlNets
cache = {}
for p in model_paths:
if p is not None:
if p in loaded_ControlNets:
cache[p] = loaded_ControlNets[p]
else:
cache[p] = core.load_controlnet(p)
loaded_ControlNets = cache
return
@torch.no_grad()
@torch.inference_mode()
def assert_model_integrity():
error_message = None
if not isinstance(model_base.unet_with_lora.model, SDXL):
error_message = 'You have selected base model other than SDXL. This is not supported yet.'
if error_message is not None:
raise NotImplementedError(error_message)
return True
@torch.no_grad()
@torch.inference_mode()
def refresh_base_model(name):
global model_base
filename = get_file_from_folder_list(name, modules.config.paths_checkpoints)
if model_base.filename == filename:
return
model_base = core.StableDiffusionModel()
model_base = core.load_model(filename)
print(f'Base model loaded: {model_base.filename}')
return
@torch.no_grad()
@torch.inference_mode()
def refresh_refiner_model(name):
global model_refiner
filename = get_file_from_folder_list(name, modules.config.paths_checkpoints)
if model_refiner.filename == filename:
return
model_refiner = core.StableDiffusionModel()
if name == 'None':
print(f'Refiner unloaded.')
return
model_refiner = core.load_model(filename)
print(f'Refiner model loaded: {model_refiner.filename}')
if isinstance(model_refiner.unet.model, SDXL):
model_refiner.clip = None
model_refiner.vae = None
elif isinstance(model_refiner.unet.model, SDXLRefiner):
model_refiner.clip = None
model_refiner.vae = None
else:
model_refiner.clip = None
return
@torch.no_grad()
@torch.inference_mode()
def synthesize_refiner_model():
global model_base, model_refiner
print('Synthetic Refiner Activated')
model_refiner = core.StableDiffusionModel(
unet=model_base.unet,
vae=model_base.vae,
clip=model_base.clip,
clip_vision=model_base.clip_vision,
filename=model_base.filename
)
model_refiner.vae = None
model_refiner.clip = None
model_refiner.clip_vision = None
return
@torch.no_grad()
@torch.inference_mode()
def refresh_loras(loras, base_model_additional_loras=None):
global model_base, model_refiner
if not isinstance(base_model_additional_loras, list):
base_model_additional_loras = []
model_base.refresh_loras(loras + base_model_additional_loras)
model_refiner.refresh_loras(loras)
return
@torch.no_grad()
@torch.inference_mode()
def clip_encode_single(clip, text, verbose=False):
cached = clip.fcs_cond_cache.get(text, None)
if cached is not None:
if verbose:
print(f'[CLIP Cached] {text}')
return cached
tokens = clip.tokenize(text)
result = clip.encode_from_tokens(tokens, return_pooled=True)
clip.fcs_cond_cache[text] = result
if verbose:
print(f'[CLIP Encoded] {text}')
return result
@torch.no_grad()
@torch.inference_mode()
def clone_cond(conds):
results = []
for c, p in conds:
p = p["pooled_output"]
if isinstance(c, torch.Tensor):
c = c.clone()
if isinstance(p, torch.Tensor):
p = p.clone()
results.append([c, {"pooled_output": p}])
return results
@torch.no_grad()
@torch.inference_mode()
def clip_encode(texts, pool_top_k=1):
global final_clip
if final_clip is None:
return None
if not isinstance(texts, list):
return None
if len(texts) == 0:
return None
cond_list = []
pooled_acc = 0
for i, text in enumerate(texts):
cond, pooled = clip_encode_single(final_clip, text)
cond_list.append(cond)
if i < pool_top_k:
pooled_acc += pooled
return [[torch.cat(cond_list, dim=1), {"pooled_output": pooled_acc}]]
@torch.no_grad()
@torch.inference_mode()
def clear_all_caches():
final_clip.fcs_cond_cache = {}
@torch.no_grad()
@torch.inference_mode()
def prepare_text_encoder(async_call=True):
if async_call:
# TODO: make sure that this is always called in an async way so that users cannot feel it.
pass
assert_model_integrity()
ldm_patched.modules.model_management.load_models_gpu([final_clip.patcher, final_expansion.patcher])
return
@torch.no_grad()
@torch.inference_mode()
def refresh_everything(refiner_model_name, base_model_name, loras,
base_model_additional_loras=None, use_synthetic_refiner=False):
global final_unet, final_clip, final_vae, final_refiner_unet, final_refiner_vae, final_expansion
final_unet = None
final_clip = None
final_vae = None
final_refiner_unet = None
final_refiner_vae = None
if use_synthetic_refiner and refiner_model_name == 'None':
print('Synthetic Refiner Activated')
refresh_base_model(base_model_name)
synthesize_refiner_model()
else:
refresh_refiner_model(refiner_model_name)
refresh_base_model(base_model_name)
refresh_loras(loras, base_model_additional_loras=base_model_additional_loras)
assert_model_integrity()
final_unet = model_base.unet_with_lora
final_clip = model_base.clip_with_lora
final_vae = model_base.vae
final_refiner_unet = model_refiner.unet_with_lora
final_refiner_vae = model_refiner.vae
if final_expansion is None:
final_expansion = FooocusExpansion()
prepare_text_encoder(async_call=True)
clear_all_caches()
return
refresh_everything(
refiner_model_name=modules.config.default_refiner_model_name,
base_model_name=modules.config.default_base_model_name,
loras=modules.config.default_loras
)
@torch.no_grad()
@torch.inference_mode()
def vae_parse(latent):
if final_refiner_vae is None:
return latent
result = vae_interpose.parse(latent["samples"])
return {'samples': result}
@torch.no_grad()
@torch.inference_mode()
def calculate_sigmas_all(sampler, model, scheduler, steps):
from ldm_patched.modules.samplers import calculate_sigmas_scheduler
discard_penultimate_sigma = False
if sampler in ['dpm_2', 'dpm_2_ancestral']:
steps += 1
discard_penultimate_sigma = True
sigmas = calculate_sigmas_scheduler(model, scheduler, steps)
if discard_penultimate_sigma:
sigmas = torch.cat([sigmas[:-2], sigmas[-1:]])
return sigmas
@torch.no_grad()
@torch.inference_mode()
def calculate_sigmas(sampler, model, scheduler, steps, denoise):
if denoise is None or denoise > 0.9999:
sigmas = calculate_sigmas_all(sampler, model, scheduler, steps)
else:
new_steps = int(steps / denoise)
sigmas = calculate_sigmas_all(sampler, model, scheduler, new_steps)
sigmas = sigmas[-(steps + 1):]
return sigmas
@torch.no_grad()
@torch.inference_mode()
def get_candidate_vae(steps, switch, denoise=1.0, refiner_swap_method='joint'):
assert refiner_swap_method in ['joint', 'separate', 'vae']
if final_refiner_vae is not None and final_refiner_unet is not None:
if denoise > 0.9:
return final_vae, final_refiner_vae
else:
if denoise > (float(steps - switch) / float(steps)) ** 0.834: # karras 0.834
return final_vae, None
else:
return final_refiner_vae, None
return final_vae, final_refiner_vae
@torch.no_grad()
@torch.inference_mode()
def process_diffusion(positive_cond, negative_cond, steps, switch, width, height, image_seed, callback, sampler_name, scheduler_name, latent=None, denoise=1.0, tiled=False, cfg_scale=7.0, refiner_swap_method='joint', disable_preview=False):
target_unet, target_vae, target_refiner_unet, target_refiner_vae, target_clip \
= final_unet, final_vae, final_refiner_unet, final_refiner_vae, final_clip
assert refiner_swap_method in ['joint', 'separate', 'vae']
if final_refiner_vae is not None and final_refiner_unet is not None:
# Refiner Use Different VAE (then it is SD15)
if denoise > 0.9:
refiner_swap_method = 'vae'
else:
refiner_swap_method = 'joint'
if denoise > (float(steps - switch) / float(steps)) ** 0.834: # karras 0.834
target_unet, target_vae, target_refiner_unet, target_refiner_vae \
= final_unet, final_vae, None, None
print(f'[Sampler] only use Base because of partial denoise.')
else:
positive_cond = clip_separate(positive_cond, target_model=final_refiner_unet.model, target_clip=final_clip)
negative_cond = clip_separate(negative_cond, target_model=final_refiner_unet.model, target_clip=final_clip)
target_unet, target_vae, target_refiner_unet, target_refiner_vae \
= final_refiner_unet, final_refiner_vae, None, None
print(f'[Sampler] only use Refiner because of partial denoise.')
print(f'[Sampler] refiner_swap_method = {refiner_swap_method}')
if latent is None:
initial_latent = core.generate_empty_latent(width=width, height=height, batch_size=1)
else:
initial_latent = latent
minmax_sigmas = calculate_sigmas(sampler=sampler_name, scheduler=scheduler_name, model=final_unet.model, steps=steps, denoise=denoise)
sigma_min, sigma_max = minmax_sigmas[minmax_sigmas > 0].min(), minmax_sigmas.max()
sigma_min = float(sigma_min.cpu().numpy())
sigma_max = float(sigma_max.cpu().numpy())
print(f'[Sampler] sigma_min = {sigma_min}, sigma_max = {sigma_max}')
modules.patch.BrownianTreeNoiseSamplerPatched.global_init(
initial_latent['samples'].to(ldm_patched.modules.model_management.get_torch_device()),
sigma_min, sigma_max, seed=image_seed, cpu=False)
decoded_latent = None
if refiner_swap_method == 'joint':
sampled_latent = core.ksampler(
model=target_unet,
refiner=target_refiner_unet,
positive=positive_cond,
negative=negative_cond,
latent=initial_latent,
steps=steps, start_step=0, last_step=steps, disable_noise=False, force_full_denoise=True,
seed=image_seed,
denoise=denoise,
callback_function=callback,
cfg=cfg_scale,
sampler_name=sampler_name,
scheduler=scheduler_name,
refiner_switch=switch,
previewer_start=0,
previewer_end=steps,
disable_preview=disable_preview
)
decoded_latent = core.decode_vae(vae=target_vae, latent_image=sampled_latent, tiled=tiled)
if refiner_swap_method == 'separate':
sampled_latent = core.ksampler(
model=target_unet,
positive=positive_cond,
negative=negative_cond,
latent=initial_latent,
steps=steps, start_step=0, last_step=switch, disable_noise=False, force_full_denoise=False,
seed=image_seed,
denoise=denoise,
callback_function=callback,
cfg=cfg_scale,
sampler_name=sampler_name,
scheduler=scheduler_name,
previewer_start=0,
previewer_end=steps,
disable_preview=disable_preview
)
print('Refiner swapped by changing ksampler. Noise preserved.')
target_model = target_refiner_unet
if target_model is None:
target_model = target_unet
print('Use base model to refine itself - this may because of developer mode.')
sampled_latent = core.ksampler(
model=target_model,
positive=clip_separate(positive_cond, target_model=target_model.model, target_clip=target_clip),
negative=clip_separate(negative_cond, target_model=target_model.model, target_clip=target_clip),
latent=sampled_latent,
steps=steps, start_step=switch, last_step=steps, disable_noise=True, force_full_denoise=True,
seed=image_seed,
denoise=denoise,
callback_function=callback,
cfg=cfg_scale,
sampler_name=sampler_name,
scheduler=scheduler_name,
previewer_start=switch,
previewer_end=steps,
disable_preview=disable_preview
)
target_model = target_refiner_vae
if target_model is None:
target_model = target_vae
decoded_latent = core.decode_vae(vae=target_model, latent_image=sampled_latent, tiled=tiled)
if refiner_swap_method == 'vae':
modules.patch.patch_settings[os.getpid()].eps_record = 'vae'
if modules.inpaint_worker.current_task is not None:
modules.inpaint_worker.current_task.unswap()
sampled_latent = core.ksampler(
model=target_unet,
positive=positive_cond,
negative=negative_cond,
latent=initial_latent,
steps=steps, start_step=0, last_step=switch, disable_noise=False, force_full_denoise=True,
seed=image_seed,
denoise=denoise,
callback_function=callback,
cfg=cfg_scale,
sampler_name=sampler_name,
scheduler=scheduler_name,
previewer_start=0,
previewer_end=steps,
disable_preview=disable_preview
)
print('Fooocus VAE-based swap.')
target_model = target_refiner_unet
if target_model is None:
target_model = target_unet
print('Use base model to refine itself - this may because of developer mode.')
sampled_latent = vae_parse(sampled_latent)
k_sigmas = 1.4
sigmas = calculate_sigmas(sampler=sampler_name,
scheduler=scheduler_name,
model=target_model.model,
steps=steps,
denoise=denoise)[switch:] * k_sigmas
len_sigmas = len(sigmas) - 1
noise_mean = torch.mean(modules.patch.patch_settings[os.getpid()].eps_record, dim=1, keepdim=True)
if modules.inpaint_worker.current_task is not None:
modules.inpaint_worker.current_task.swap()
sampled_latent = core.ksampler(
model=target_model,
positive=clip_separate(positive_cond, target_model=target_model.model, target_clip=target_clip),
negative=clip_separate(negative_cond, target_model=target_model.model, target_clip=target_clip),
latent=sampled_latent,
steps=len_sigmas, start_step=0, last_step=len_sigmas, disable_noise=False, force_full_denoise=True,
seed=image_seed+1,
denoise=denoise,
callback_function=callback,
cfg=cfg_scale,
sampler_name=sampler_name,
scheduler=scheduler_name,
previewer_start=switch,
previewer_end=steps,
sigmas=sigmas,
noise_mean=noise_mean,
disable_preview=disable_preview
)
target_model = target_refiner_vae
if target_model is None:
target_model = target_vae
decoded_latent = core.decode_vae(vae=target_model, latent_image=sampled_latent, tiled=tiled)
images = core.pytorch_to_numpy(decoded_latent)
modules.patch.patch_settings[os.getpid()].eps_record = None
return images
|