MrOvkill's picture
v0.4.1
8b482e1
"""
import gradio as gr
from transformers import AutoTokenizer, AutoModelForCausalLM
import json
import torch
import requests
import time
import random
from PIL import Image
from typing import Union
import os
import base64
from together import Together
import pathlib
import gradio_client as grc
import spaces
global shrd
shrd = gr.JSON(visible=False)
device = "cuda" if torch.cuda.is_available() else "cpu"
print(f"Using {device}" if device != "cpu" else "Using CPU")
def _load_model():
tokenizer = AutoTokenizer.from_pretrained("vikhyatk/moondream2", trust_remote_code=True, revision="2024-05-08", torch_dtype=(torch.bfloat16 if device == 'cuda' else torch.float32))
model = AutoModelForCausalLM.from_pretrained("vikhyatk/moondream2", device_map=device, trust_remote_code=True, revision="2024-05-08")
return (model, tokenizer)
class MoonDream():
def __init__(self, model=None, tokenizer=None):
self.model, self.tokenizer = (model, tokenizer)
if not model or model is None or not tokenizer or tokenizer is None:
self.model, self.tokenizer = _load_model()
self.device = device
self.model.to(self.device)
def __call__(self, question, imgs):
imn = 0
for img in imgs:
img = self.model.encode_image(img)
res = self.model.answer_question(question=question, image_embeds=img, tokenizer=self.tokenizer)
yield res
return
md = MoonDream()
SYSTEM_PROMPT = "You are Llama 3 70b. You have been given access to Moondream 2 for VQA when given images. When you have a question about an image, simple start your response with the text, '@question\\nMy question?'. When you do this, the request will be sent to Moondream 2. User can see this happening if they turn debug on, so be professional and stay on topic. Any chat from anyone starting with @answer is the answer to last question asked. If something appears out of sync, ask User to clear the chat."
@spaces.GPU
def _respond_one(question, img):
txt = ""
yield (txt := txt + MoonDream()(question, [img]))
return txt
def respond_batch(question, **imgs):
md = MoonDream()
for img in imgs.values():
res = md(question, img)
for r in res:
yield r
yield "\n\n\n\n\n\n"
return
def dual_images(img1: Image):
# Ran once for each img to it's respective output. Output should be detailed str of description/feature extraction/interrogation.
md = MoonDream()
res = md("Describe the image in plain english ", [img1])
txt = ""
for r in res:
yield (txt := txt + r)
return
import os
def merge_descriptions_to_prompt(mi, d1, d2):
from together import Together
tog = Together(api_key=os.getenv("TOGETHER_KEY"))
res = tog.completions.create(prompt=f""" """Describe what would result if the following two descriptions were describing one thing.
### Description 1:
""" """
```text
{d1}
```
### Description 2:
```text
{d2}
```
Merge-Specific Instructions:
```text
{mi}
```
Ensure you end your output with ```\\n
---
Complete Description:
```text"""
""", model="meta-llama/Meta-Llama-3-70B", stop=["```"], max_tokens=1024)
return res.choices[0].text.split("```")[0]
def xform_image_description(img, inst):
#md = MoonDream()
from together import Together
desc = dual_images(img)
tog = Together(api_key=os.getenv("TOGETHER_KEY"))
prompt=f""" """Describe the image in aggressively verbose detail. I must know every freckle upon a man's brow and each blade of the grass intimately.\nDescription: ```text\n{desc}\n```\nInstructions:\n```text\n{inst}\n```\n\n\n---\nDetailed Description:\n```text """ """
res = tog.completions.create(prompt=prompt, model="meta-llama/Meta-Llama-3-70B", stop=["```"], max_tokens=1024)
return res.choices[0].text[len(prompt):].split("```")[0]
def simple_desc(img, prompt):
import base64
gen = md(prompt, [img])
total = ""
for resp in gen:
print(total := total + resp)
img.resize((192,192)).save("tmp.png")
bts = False
with open("tmp.png", "rb") as f:
bts = f.read()
if bts:
os.remove("tmp.png")
res = {
'image_b64': base64.b64encode(bts).decode('utf-8'),
'description': total,
}
cl = grc.Client("http://127.0.0.1:7860/")
result = cl.predict(
message="Here's the description of your latest image, repeat any relevant details to keep them in context. Here's the description:\n```text\n" + total + "\n```\n\nAnd what the user wanted to begin with: `" + prompt + "`.",
api_name="/chat"
)
print(result)
return total, res, {**res, 'chat': result}
ifc_imgprompt2text = gr.Interface(simple_desc, inputs=[gr.Image(label="input", type="pil"), gr.Textbox(label="prompt")], outputs=[gr.Textbox(label="description"), gr.JSON(label="json")])
def chat(inpt, mess, desc):
from together import Together
print(inpt, mess)
if mess is None:
mess = []
tog = Together(api_key=os.getenv("TOGETHER_KEY"))
messages = [{
'role': 'system',
'content': SYSTEM_PROMPT
}]
if desc is not None and desc != "":
messages.append({
'role': 'system',
'content': 'Here is a description of what you can see at the moment:\n```text\n' + desc + '\n```\nKeep this in mind when answering User\'s questions.'
})
messages.append({
'role': 'user',
'content': inpt
})
for cht in mess:
print(cht)
res = tog.chat.completions.create(
messages=messages,
model="meta-llama/Llama-3-70b-chat-hf", stop=["<|eot_id|>"], stream=True, safety_model="Meta-LLama/Llama-Guard-7b")
txt = ""
for pk in res:
print(pk)
txt += pk.choices[0].delta.content
#mess[-1][-2] += pk.choices[0].delta.content
yield txt #, json.dumps(messages)#mess#, json.dumps(messages)
chatbot = gr.Chatbot(
[
["Hello?", "### Greetings\n\nWell, it seems I have a visitor! What can I do for you? &lt3;\n\n---"]
],
elem_id="chatbot",
bubble_full_width=False,
sanitize_html=False,
show_copy_button=True,
avatar_images=[
pathlib.Path("image.jpeg"),
pathlib.Path("image2.jpeg")
])
wizard_chatbot = gr.Chatbot(
[
["Hello?", "### Greetings\n\nWell, it seems I have a visitor! What can I do for you? &lt3;\n\n---"]
],
elem_id="chatbot_wizard",
bubble_full_width=True,
sanitize_html=False,
show_copy_button=True,
avatar_images=[
pathlib.Path("image.png"),
pathlib.Path("image2.jpeg")
]
)
def wizard_chat(inpt, mess):
from together import Together
print(inpt, mess)
if mess is None:
mess = []
tog = Together(api_key=os.getenv("TOGETHER_KEY"))
messages = []
messages.append({
'role': 'user',
'content': "English; Please reply in English. " + inpt
})
for cht in mess:
print(cht)
res = tog.chat.completions.create(
messages=messages,
model="microsoft/WizardLM-2-8x22B", stop=["</s>"], stream=True, safety_model="Meta-LLama/Llama-Guard-7b")
txt = ""
for pk in res:
print(pk)
txt += pk.choices[0].delta.content
#mess[-1][-2] += pk.choices[0].delta.content
yield txt #, json.dumps(messages)#mess#, json.dumps(messages
botroom = None
def group_chat(room: str, **models):
wzn = json.loads(wzn)
lmn = json.loads(lmn)
print(wzn, lmn)
if not "replace_token" in wzn:
wzn["replace_token"] = "<|wizard|>"
if not "replace_token" in lmn:
lmn["replace_token"] = "</Llama>"
while room.find(lmn['replace_token']) != -1 or room.find(wzn['replace_token']) != -1:
if not "prompt" in wzn and room.find(wzn['replace_token']) != -1:
wzn["prompt"] = room[0:room.find(wzn['replace_token'])]
if not "prompt" in lmn and room.find(lmn['replace_token']) != -1:
lmn["prompt"] = room[0:room.find(lmn['replace_token'])]
print(wzn, lmn)
if "prompt" in wzn:
print(wzn)
res = wizard_chat(wzn['prompt'], [])
tx = ""
for r in res:
yield cdd + r
tx = r
return cdd + txt
# Let's make a more genetic model-merge with shadow config that has basic sane defaults for any model.
# top_k 42
# top_p 0.842
# max_tokens 1536
# temperature 0.693
shadow_config = {
"top_k": 42,
"top_p": 0.842,
"max_tokens": 1536,
"temperature": 0.693,
"repetition_penalty": 1.12
}
#models = {#
# }
arch_room = None
def wizard_complete(cdd, wzs):
tog = Together(api_key=os.getenv("TOGETHER_KEY"))
if wzs.startswith("root="):
wzs = wzs[5:]
wzs = json.loads(wzs)
print(wzs)
if not "stop" in wzs:
wzs["stop"] = ['###', '\n\n\n', '<|im_end|>', '<|im_start|>']
if not "model" in wzs:
wzs["model"] = "WizardLM/WizardCoder-Python-34B-V1.0"
if not "prompt" in wzs:
wzs["prompt"] = cdd
res = tog.completions.create(prompt=wzs["prompt"], model=wzs["model"], stop=wzs["stop"], max_tokens=1024, stream=False)
txt = cdd + res.choices[0].text
return txt, txt
with gr.Blocks() as arch_room:
with gr.Row():
gr.Markdown(f"""
## Arcanistry
"""
*POOF* -- You walk in, to a cloudy room filled with heavy smoke. In the center of the room rests a waist-height table. Upon the table, you see a... You don't understand... It's dark and light and cold and warm but... As you extend your hand, you hear the voice travel up your arm and into your ears...
---
""" """)
with gr.Row():
cdd = gr.Code(""" """### Human
I require a Python script that serves a simple file server in Python over MongoDB.
### Wizard
Sure! Here's the script:
```python""" """, language="markdown")
with gr.Row():
wzs = gr.Code(json.dumps({
'token': '<|wizard|>',
'model': 'WizardLM/WizardCoder-Python-34B-V1.0',
'stop': ['###', '\n\n\n', '<|im_end|>', '<|im_start|>']
}))
with gr.Row():
rnd = gr.Markdown("")
with gr.Row():
subm_prompt = gr.Button("Run Prompt")
subm_prompt.click(wizard_complete, inputs=[cdd, wzs], outputs=[cdd, rnd])
with gr.TabbedInterface([ifc_imgprompt2text, c_ifc := gr.ChatInterface(chat, chatbot=chatbot, submit_btn=gr.Button(scale=1)), gr.ChatInterface(wizard_chat), arch_room], ["Prompt & Image 2 Text", "Chat w/ Llama 3 70b", "Chat w/ WizardLM 8x22B", "Arcanistry"]) as ifc:
shrd = gr.JSON(visible=False)
ifc.launch(share=False, debug=True, show_error=True) """
from transformers import AutoTokenizer, AutoModelForCausalLM
import gradio as gr
import spaces
from PIL import Image
import hashlib
import base64
def load_md2():
model = AutoModelForCausalLM.from_pretrained("vikhyatk/moondream2", device_map="cpu", trust_remote_code=True,revision="2025-01-09")
return model
global md2
md2 = load_md2()
@spaces.GPU()
def moondream2(question, image, history=None):
global md2
model = md2
model.cuda()
hsh = hashlib.sha256(bts := image.resize((224,224), Image.NEAREST).tobytes()).hexdigest()
b64 = base64.b64encode(bts).decode('utf-8')
res = model.query(image, question) if question is not None and question != "" else model.caption(image)
model.cpu()
ress = []
if history is not None:
for itm in history:
ress.append(itm)
ress.append({
"answer": res["answer"] if question is not None and question != "" else None,
"caption": res["caption"] if question is None or question == "" else None,
"sha256": hsh,
"image_b64": b64
})
return ress, ress
def gui():
with gr.Blocks() as blk:
with gr.Row():
imgs = gr.Image(label="input", type="pil", elem_id="imgs")
with gr.Row():
txt = gr.Textbox(label="prompt")
with gr.Row():
btn = gr.Button("Run")
with gr.Row():
res = gr.JSON(label="output")
with gr.Row(visible=False):
history = gr.JSON(label="history")
btn.click(moondream2, inputs=[txt, imgs, history], outputs=[res, history])
blk.launch(share=False)
if __name__ == "__main__":
gui()