File size: 8,161 Bytes
6cf191b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165

#############################
#   Imports
#############################

# Python modules
from collections import deque
from collections import defaultdict
from typing import List, Dict, Optional
from ast import literal_eval
from random import sample

# Remote modules

# Local modules
from .kg_base_wrapper import KGBaseHandler
from .swow_handler import SwowHandler

from utils import (
    read_json_file_2_dict,
    Data_Type,
)
from .parsing_utils import ParsingUtils

#############################
#   Constants
#############################

#############################
#   Stuff
#############################

class RelationsMapperBuilder:
    def __init__(self,  knowledge: KGBaseHandler,
                        filename: Optional[str] = None,
                        file_dir: Optional[str] = None,
                        datatype: Optional[Data_Type] = None,
                        tok_sep:str = '</s>',
                        use_extra_relations=True):
        self.tok_sep = tok_sep
        self.knowledge = knowledge
        self.swow_knowledge = SwowHandler()
        self.use_extra_relations = use_extra_relations
        if filename and file_dir and datatype:
            full_context = self.load_data(filename, file_dir)
            self.relevant_context = self.fetch_relevant_context_from_data(data=full_context, datatype=datatype)

    def load_data(self, filename='commongen_qa_final.json', store_dir='./'):
        data = read_json_file_2_dict(filename=filename, store_dir=store_dir)
        print('data[0]:', data[0])
        return data

    def fetch_relevant_context_from_data(self, data: List[Dict], datatype:Data_Type = Data_Type.COMMONGEN_QA):
        if datatype == Data_Type.COMMONGEN_QA:
            model_input = [data_unit.get('title').lower() for data_unit in data]
        elif datatype in [Data_Type.ELI5, Data_Type.STACK_EXCHANGE]:
            model_input = [data_unit.get('question').lower() for data_unit in data]
        elif datatype in [Data_Type.COMMONSENSE_QA]:
            #questions = [data_unit.get('question').lower() for data_unit in data]
            #model_input = datasets_parsing_utils.compose_commonsenseqa_data(data)
            model_input = [data_unit.get('input_data') for data_unit in data]
        elif datatype in [Data_Type.COMMONGEN]:
            #questions = [data_unit.get('input_data').lower() for data_unit in data]
            #model_input = datasets_parsing_utils.compose_commongen_data(data)
            model_input = [data_unit.get('input_data') for data_unit in data]
        else:
            model_input = []
        return model_input

    def get_kg_concepts_from_context(self, context=None, clear_common_wds=False):
        if not context:
            context = self.relevant_context
        context_words = []
        for q_id, question in enumerate(context):
            simple_question = ParsingUtils.remove_pontuation(question)
            n_grams = ParsingUtils.n_grams_n_words_extractor(simple_question)
            words = self.relevant_entities_extractor(n_grams)
            if clear_common_wds:
                words = ParsingUtils.clear_common_words(words)
            simple_words = [word[0] for word in words]
            context_words.append(simple_words)
        return context_words

    def obtain_concept_neighbours(self, context_concepts:List[str], n_neighbours = 20):
        """
        Use swow to get connected concepts, but then refer back to conceptnet for rich relations
        """
        neighbours = []
        for concept in context_concepts:
            external_neighbour_concepts = self.swow_knowledge.get_related_concepts(concept)
            relevant_concepts = external_neighbour_concepts
            #local_neighbour_concepts = self.knowledge.get_related_concepts(concept)
            #relevant_concepts = [ext_concept for ext_concept in external_neighbour_concepts if ext_concept in local_neighbour_concepts]
            neighbours.extend(relevant_concepts)
        n_neighbours = min(n_neighbours, len(neighbours))
        some_neighbours = sample(neighbours, n_neighbours)
        #print('context_concepts:', context_concepts)
        #print('some_neighbours:', some_neighbours)
        return some_neighbours


    def get_relations_mapping_complex(self, context=None, clear_common_wds=False):
        if not context:
            context = self.relevant_context
        relations_info = deque()
        for q_id, question in enumerate(context):
            simple_question = ParsingUtils.remove_pontuation(question)
            n_grams = ParsingUtils.n_grams_n_words_extractor(simple_question)
            words = self.relevant_entities_extractor(n_grams)
            if clear_common_wds:
                words = ParsingUtils.clear_common_words(words)
            #print(f'question: {question}')
            #print(f'words: {words}')
            relation_context_between_words = defaultdict(dict)
            known_tokens = set()
            for token_i, (first_word_token, first_word_range) in enumerate(words[:-1]):
                known_tokens.add(first_word_token)
                first_word_range_str = str(first_word_range)
                # normalize
                first_word_phrase_normalized = self.knowledge.normalize_nouns(first_word_token)
                for (second_word_token, second_word_range) in [w for w in words[token_i + 1:] if w not in known_tokens]:
                    second_word_range_str = str(second_word_range)
                    second_word_phrase_normalized = self.knowledge.normalize_nouns(second_word_token)
                    left_2_right, right_2_left = self.knowledge.relation_between(first_word_phrase_normalized, second_word_phrase_normalized)
                    #print(first_word_token, second_word_token, left_2_right, right_2_left)
                    if left_2_right:
                        relation_context_between_words[first_word_range_str][second_word_range_str] = left_2_right
                    if right_2_left:
                        relation_context_between_words[second_word_range_str][first_word_range_str] = right_2_left
            relations_info.append(dict(relation_context_between_words))
        return list(relations_info)

    def get_concepts_from_context(self, context=None, clear_common_wds=False,alignment=0):
        relations_info = self.get_relations_mapping_complex(context=[context], clear_common_wds=clear_common_wds)
        words = []
        #print('relations_info here:', relations_info)
        for rels in relations_info:
            for coords, v in rels.items():
                coords_tuple = literal_eval(coords)
                i,j = coords_tuple
                words.append(context[i+alignment:j+alignment])
                for coords_other, rel in v.items():
                    coords_other_tuple = literal_eval(coords_other)
                    i_other, j_other = coords_other_tuple
                    words.append(context[i_other+alignment: j_other+alignment])
        returning_words = list(set(words))
        #print('returning_words:', returning_words)
        return returning_words

    def relevant_entities_extractor(self, n_grams_n_words, verbose_output=True):
        non_overlapping_knowledge = {}
        # print(n_grams_n_words)
        for concept, (idx_start, idx_end) in n_grams_n_words:
            normalized_concept = self.knowledge.normalize_nouns(concept)
            exists = self.knowledge.does_concept_exist(normalized_concept)
            #print('exists: ', concept, normalized_concept, exists)
            if exists and idx_start not in non_overlapping_knowledge and \
                idx_end not in non_overlapping_knowledge:
                non_overlapping_knowledge[idx_start] = (concept, idx_start, idx_end, 'start_idx')
                non_overlapping_knowledge[idx_end] = (concept, idx_end, idx_end, 'end_idx')
        if verbose_output:
            return [(value[0], (value[1], value[2])) for k, value in sorted(non_overlapping_knowledge.items()) if value[-1] == 'start_idx']
        else:
            return [value[0] for k, value in sorted(non_overlapping_knowledge.items()) if value[-1] == 'start_idx']