Spaces:
Runtime error
Runtime error
import gradio as gr | |
from transformers import AutoModelForSequenceClassification, AutoTokenizer | |
import torch | |
from huggingface_hub import notebook_login | |
notebook_login() | |
model_name = "Shiko07/tuned_test_trainer-bert-base-uncased" | |
model = AutoModelForSequenceClassification.from_pretrained(model_name) | |
tokenizer = AutoTokenizer.from_pretrained(model_name) | |
def predict_sentiment(text): | |
inputs = tokenizer(text, return_tensors="pt") | |
outputs = model(**inputs) | |
predicted_class = torch.argmax(outputs.logits, dim=1).item() | |
return {0: "Negative", 1: "Neutral", 2: "Positive"}[predicted_class] | |
custom_css = """ | |
.gradio { | |
background-color: #0074D9; /* Change background color to blue */ | |
} | |
""" | |
# predict_sentiment function | |
interface = gr.Interface( | |
fn=predict_sentiment, | |
inputs=gr.Textbox(lines=3, label="Enter your text:"), | |
outputs="text", | |
title="Marrakech Sentiment Analysis App", | |
description="An app for sentiment analysis for Tweet posts on covid 19 vaccine.", | |
css=custom_css, | |
examples = [ ["Vaccine misinformation is harmful."], | |
["I'm hopeful about the vaccine."], | |
["Second dose excitement."], | |
["I'm worried about vaccine side effects."], | |
["Vaccine distribution updates are available."], | |
["Vaccine distribution is too slow."], | |
["I'm gathering information about the vaccine."] | |
] | |
) | |
interface.launch() | |