Spaces:
Sleeping
Sleeping
Update_1
Browse files- app.py +97 -59
- requirements.txt +12 -1
- youtube_FC_14.py +443 -0
app.py
CHANGED
@@ -1,63 +1,101 @@
|
|
|
|
|
|
1 |
import gradio as gr
|
2 |
-
from
|
3 |
-
|
4 |
-
|
5 |
-
|
6 |
-
|
7 |
-
client = InferenceClient("HuggingFaceH4/zephyr-7b-beta")
|
8 |
-
|
9 |
-
|
10 |
-
def respond(
|
11 |
-
message,
|
12 |
-
history: list[tuple[str, str]],
|
13 |
-
system_message,
|
14 |
-
max_tokens,
|
15 |
-
temperature,
|
16 |
-
top_p,
|
17 |
-
):
|
18 |
-
messages = [{"role": "system", "content": system_message}]
|
19 |
-
|
20 |
-
for val in history:
|
21 |
-
if val[0]:
|
22 |
-
messages.append({"role": "user", "content": val[0]})
|
23 |
-
if val[1]:
|
24 |
-
messages.append({"role": "assistant", "content": val[1]})
|
25 |
-
|
26 |
-
messages.append({"role": "user", "content": message})
|
27 |
-
|
28 |
-
response = ""
|
29 |
-
|
30 |
-
for message in client.chat_completion(
|
31 |
-
messages,
|
32 |
-
max_tokens=max_tokens,
|
33 |
-
stream=True,
|
34 |
-
temperature=temperature,
|
35 |
-
top_p=top_p,
|
36 |
-
):
|
37 |
-
token = message.choices[0].delta.content
|
38 |
-
|
39 |
-
response += token
|
40 |
-
yield response
|
41 |
-
|
42 |
-
"""
|
43 |
-
For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface
|
44 |
-
"""
|
45 |
-
demo = gr.ChatInterface(
|
46 |
-
respond,
|
47 |
-
additional_inputs=[
|
48 |
-
gr.Textbox(value="You are a friendly Chatbot.", label="System message"),
|
49 |
-
gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"),
|
50 |
-
gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
|
51 |
-
gr.Slider(
|
52 |
-
minimum=0.1,
|
53 |
-
maximum=1.0,
|
54 |
-
value=0.95,
|
55 |
-
step=0.05,
|
56 |
-
label="Top-p (nucleus sampling)",
|
57 |
-
),
|
58 |
-
],
|
59 |
-
)
|
60 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
61 |
|
62 |
if __name__ == "__main__":
|
63 |
-
demo.launch()
|
|
|
1 |
+
import os
|
2 |
+
import openai
|
3 |
import gradio as gr
|
4 |
+
from youtube_transcript_api import YouTubeTranscriptApi
|
5 |
+
from langchain_openai import ChatOpenAI
|
6 |
+
from langchain.agents import AgentExecutor
|
7 |
+
from langchain.memory import ConversationBufferWindowMemory
|
8 |
+
from youtube_FC_14 import YouTubeTranscriptTool, MainPointsExtractor, SummaryExtractor, YouTubeAgent
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
9 |
|
10 |
+
import logging
|
11 |
+
logging.getLogger().setLevel(logging.ERROR)
|
12 |
+
|
13 |
+
import warnings
|
14 |
+
warnings.filterwarnings("ignore")
|
15 |
+
|
16 |
+
class ChatBot:
|
17 |
+
def __init__(self):
|
18 |
+
self.youtube_agent = None
|
19 |
+
self.api_key = None
|
20 |
+
|
21 |
+
def initialize_agent(self, api_key):
|
22 |
+
if api_key:
|
23 |
+
os.environ['OPENAI_API_KEY'] = api_key
|
24 |
+
openai.api_key = api_key
|
25 |
+
self.api_key = api_key
|
26 |
+
self.youtube_agent = YouTubeAgent()
|
27 |
+
return "API key set successfully. Agent initialized."
|
28 |
+
else:
|
29 |
+
return "Please provide a valid API key."
|
30 |
+
|
31 |
+
def chat(self, message, history):
|
32 |
+
if not self.youtube_agent:
|
33 |
+
return "Please set your OpenAI API key first."
|
34 |
+
|
35 |
+
try:
|
36 |
+
response = self.youtube_agent.invoke(message)
|
37 |
+
return response
|
38 |
+
except Exception as e:
|
39 |
+
return f"An error occurred: {str(e)}"
|
40 |
+
|
41 |
+
chatbot = ChatBot() # Create an instance of ChatBot
|
42 |
+
|
43 |
+
def set_api_key(api_key):
|
44 |
+
return chatbot.initialize_agent(api_key)
|
45 |
+
|
46 |
+
def user_message(message, history):
|
47 |
+
return "", history + [[message, None]]
|
48 |
+
|
49 |
+
def bot_message(history):
|
50 |
+
user_message = history[-1][0]
|
51 |
+
bot_response = chatbot.chat(user_message, history)
|
52 |
+
history[-1][1] = bot_response
|
53 |
+
return history
|
54 |
+
|
55 |
+
def use_example(example, text_input):
|
56 |
+
return example
|
57 |
+
|
58 |
+
# Example messages
|
59 |
+
example_messages = [
|
60 |
+
"What tools are available for use?",
|
61 |
+
"What is the following video about? https://www.youtube.com/watch?v=dZxbVGhpEkI",
|
62 |
+
"Can you summarize this video? https://www.youtube.com/watch?v=hM8unyUM6KA",
|
63 |
+
"Extract the main points from this video: https://www.youtube.com/watch?v=UF8uR6Z6KLc"
|
64 |
+
]
|
65 |
+
|
66 |
+
with gr.Blocks() as demo:
|
67 |
+
gr.Markdown("# YouTube Video Analysis Chatbot")
|
68 |
+
|
69 |
+
with gr.Row():
|
70 |
+
api_key_input = gr.Textbox(type="password", label="Enter your OpenAI API key")
|
71 |
+
api_key_button = gr.Button("Set API Key")
|
72 |
+
|
73 |
+
api_key_status = gr.Textbox(label="API Key Status", interactive=False)
|
74 |
+
|
75 |
+
chatbot_interface = gr.Chatbot()
|
76 |
+
msg = gr.Textbox(label="Message")
|
77 |
+
|
78 |
+
with gr.Row():
|
79 |
+
submit_btn = gr.Button("Submit")
|
80 |
+
clear_btn = gr.Button("Clear")
|
81 |
+
|
82 |
+
gr.Markdown("## Example Messages")
|
83 |
+
example_btns = [gr.Button(i) for i in example_messages]
|
84 |
+
|
85 |
+
api_key_button.click(set_api_key, inputs=api_key_input, outputs=api_key_status)
|
86 |
+
|
87 |
+
submit_btn.click(user_message, [msg, chatbot_interface], [msg, chatbot_interface], queue=False).then(
|
88 |
+
bot_message, chatbot_interface, chatbot_interface
|
89 |
+
)
|
90 |
+
|
91 |
+
msg.submit(user_message, [msg, chatbot_interface], [msg, chatbot_interface], queue=False).then(
|
92 |
+
bot_message, chatbot_interface, chatbot_interface
|
93 |
+
)
|
94 |
+
|
95 |
+
clear_btn.click(lambda: None, None, chatbot_interface, queue=False)
|
96 |
+
|
97 |
+
for btn, example in zip(example_btns, example_messages):
|
98 |
+
btn.click(use_example, inputs=[gr.Textbox(value=example, visible=False)], outputs=msg)
|
99 |
|
100 |
if __name__ == "__main__":
|
101 |
+
demo.launch()
|
requirements.txt
CHANGED
@@ -1 +1,12 @@
|
|
1 |
-
huggingface_hub==0.22.2
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
huggingface_hub==0.22.2
|
2 |
+
youtube-transcript-api==0.6.2
|
3 |
+
gradio==4.38.1
|
4 |
+
tiktoken==0.7.
|
5 |
+
pytube==15.0.0
|
6 |
+
langchain==0.2.8
|
7 |
+
langchain-community==0.2.7
|
8 |
+
langchain-core==0.2.19
|
9 |
+
langchain-openai==0.1.16
|
10 |
+
langchain-text-splitters==0.2.2
|
11 |
+
pyperclip==1.9.0
|
12 |
+
openai==1.35.13
|
youtube_FC_14.py
ADDED
@@ -0,0 +1,443 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""
|
2 |
+
YouTube Video Analysis Module
|
3 |
+
|
4 |
+
This module provides tools for analyzing YouTube videos, including transcript extraction
|
5 |
+
and main points summarization. It uses the LangChain library for natural language
|
6 |
+
processing tasks and the YouTube Transcript API for fetching video transcripts.
|
7 |
+
|
8 |
+
Classes:
|
9 |
+
YouTubeTranscriptTool: Handles fetching and processing of YouTube video transcripts.
|
10 |
+
MainPointsExtractor: Extracts and formats main points from YouTube video transcripts.
|
11 |
+
YouTubeAgent: Manages the overall agent setup for interacting with YouTube videos.
|
12 |
+
SummaryExtractor: Extracts summaries from YouTube video transcripts.
|
13 |
+
|
14 |
+
Usage:
|
15 |
+
youtube_agent = YouTubeAgent()
|
16 |
+
video_link = "https://www.youtube.com/watch?v=VIDEO_ID"
|
17 |
+
results = process_video(video_link, youtube_agent)
|
18 |
+
"""
|
19 |
+
|
20 |
+
import os
|
21 |
+
import openai
|
22 |
+
from typing import List, Dict, Any
|
23 |
+
from youtube_transcript_api import YouTubeTranscriptApi
|
24 |
+
from langchain_core.pydantic_v1 import BaseModel, Field
|
25 |
+
from langchain.prompts import ChatPromptTemplate, MessagesPlaceholder
|
26 |
+
from langchain_openai import ChatOpenAI
|
27 |
+
from langchain.schema.runnable import RunnableLambda, RunnablePassthrough
|
28 |
+
from langchain.agents import tool, AgentExecutor
|
29 |
+
from langchain.output_parsers.openai_functions import JsonKeyOutputFunctionsParser
|
30 |
+
from langchain.text_splitter import RecursiveCharacterTextSplitter
|
31 |
+
from langchain_core.utils.function_calling import convert_to_openai_function
|
32 |
+
from langchain.agents.output_parsers import OpenAIFunctionsAgentOutputParser
|
33 |
+
from langchain.agents.format_scratchpad import format_to_openai_functions
|
34 |
+
from langchain.memory import ConversationBufferWindowMemory
|
35 |
+
from functools import wraps
|
36 |
+
import functools
|
37 |
+
import logging
|
38 |
+
import traceback
|
39 |
+
|
40 |
+
# Set up logging with more detailed format
|
41 |
+
logging.basicConfig(level=logging.INFO,
|
42 |
+
format='%(asctime)s - %(levelname)s - %(name)s - %(filename)s:%(lineno)d - %(message)s')
|
43 |
+
logger = logging.getLogger(__name__)
|
44 |
+
|
45 |
+
# Define a decorator for error logging
|
46 |
+
def log_errors(func):
|
47 |
+
@wraps(func)
|
48 |
+
def wrapper(*args, **kwargs):
|
49 |
+
try:
|
50 |
+
return func(*args, **kwargs)
|
51 |
+
except Exception as e:
|
52 |
+
logger.error(f"Error in {func.__name__}: {str(e)}")
|
53 |
+
logger.error(f"Traceback: {traceback.format_exc()}")
|
54 |
+
raise
|
55 |
+
return wrapper
|
56 |
+
|
57 |
+
class YouTubeTranscriptTool:
|
58 |
+
"""
|
59 |
+
A tool for fetching and processing YouTube video transcripts.
|
60 |
+
|
61 |
+
This class provides methods to retrieve transcripts with or without timestamps,
|
62 |
+
and to split transcripts into manageable chunks.
|
63 |
+
"""
|
64 |
+
|
65 |
+
@staticmethod
|
66 |
+
@tool(return_direct=True)
|
67 |
+
def get_transcript_with_timestamps(youtube_video_id: str, chunk_number: int = 0) -> str:
|
68 |
+
"""
|
69 |
+
Retrieves a YouTube video transcript with timestamps.
|
70 |
+
|
71 |
+
Args:
|
72 |
+
youtube_video_id (str): The ID of the YouTube video.
|
73 |
+
chunk_number (int): The index of the transcript chunk to retrieve.
|
74 |
+
|
75 |
+
Returns:
|
76 |
+
str: The requested transcript chunk with timestamps.
|
77 |
+
"""
|
78 |
+
return YouTubeTranscriptTool._get_transcript(youtube_video_id, chunk_number, include_timestamps=True)
|
79 |
+
|
80 |
+
@staticmethod
|
81 |
+
@tool(return_direct=True)
|
82 |
+
def get_transcript_without_timestamps(youtube_video_id: str, chunk_number: int = 0) -> str:
|
83 |
+
"""
|
84 |
+
Retrieves a YouTube video transcript without timestamps.
|
85 |
+
|
86 |
+
Args:
|
87 |
+
youtube_video_id (str): The ID of the YouTube video.
|
88 |
+
chunk_number (int): The index of the transcript chunk to retrieve.
|
89 |
+
|
90 |
+
Returns:
|
91 |
+
str: The requested transcript chunk without timestamps.
|
92 |
+
"""
|
93 |
+
return YouTubeTranscriptTool._get_transcript(youtube_video_id, chunk_number, include_timestamps=False)
|
94 |
+
|
95 |
+
@staticmethod
|
96 |
+
@log_errors
|
97 |
+
def _get_transcript(youtube_video_id: str, chunk_number: int, include_timestamps: bool) -> str:
|
98 |
+
"""
|
99 |
+
Internal method to fetch and process the transcript.
|
100 |
+
|
101 |
+
Args:
|
102 |
+
youtube_video_id (str): The ID of the YouTube video.
|
103 |
+
chunk_number (int): The index of the transcript chunk to retrieve.
|
104 |
+
include_timestamps (bool): Whether to include timestamps in the transcript.
|
105 |
+
|
106 |
+
Returns:
|
107 |
+
str: The processed transcript chunk.
|
108 |
+
|
109 |
+
Raises:
|
110 |
+
ValueError: If the requested chunk number is out of range.
|
111 |
+
"""
|
112 |
+
try:
|
113 |
+
transcript_json = YouTubeTranscriptApi.get_transcript(youtube_video_id)
|
114 |
+
text_splitter = RecursiveCharacterTextSplitter(
|
115 |
+
chunk_size=8192,
|
116 |
+
chunk_overlap=0,
|
117 |
+
separators=[f" {char}" for char in "ABCDEFGHIJKLMNOPQRSTUVWXYZ"]
|
118 |
+
)
|
119 |
+
|
120 |
+
if include_timestamps:
|
121 |
+
transcript_data = [f"{entry['start']:.2f}: {entry['text']} " for entry in transcript_json]
|
122 |
+
else:
|
123 |
+
transcript_data = [entry['text'] for entry in transcript_json]
|
124 |
+
|
125 |
+
transcript_text = " ".join(transcript_data)
|
126 |
+
transcript_splits = text_splitter.split_text(transcript_text)
|
127 |
+
|
128 |
+
if chunk_number >= len(transcript_splits):
|
129 |
+
raise ValueError(f"Chunk number {chunk_number} is out of range. Total chunks: {len(transcript_splits)}")
|
130 |
+
|
131 |
+
chunked_text = transcript_splits[chunk_number]
|
132 |
+
|
133 |
+
return YouTubeTranscriptTool._format_response(transcript_splits, chunk_number, chunked_text)
|
134 |
+
except Exception as e:
|
135 |
+
logger.error(f"Error in _get_transcript: {str(e)}")
|
136 |
+
return f"Error fetching transcript: {str(e)}"
|
137 |
+
|
138 |
+
@staticmethod
|
139 |
+
def _format_response(transcript_splits: List[str], chunk_number: int, chunked_text: str) -> str:
|
140 |
+
"""
|
141 |
+
Formats the transcript chunk response.
|
142 |
+
|
143 |
+
Args:
|
144 |
+
transcript_splits (List[str]): All transcript chunks.
|
145 |
+
chunk_number (int): The index of the current chunk.
|
146 |
+
chunked_text (str): The text of the current chunk.
|
147 |
+
|
148 |
+
Returns:
|
149 |
+
str: Formatted response string.
|
150 |
+
"""
|
151 |
+
if len(transcript_splits) == 1:
|
152 |
+
return f"Note: Complete subtitles returned.\n\nSubtitles:{chunked_text}"
|
153 |
+
elif chunk_number == len(transcript_splits) - 1:
|
154 |
+
return f"Note: Last chunk of subtitles returned.\n\nSubtitles:{chunked_text}"
|
155 |
+
else:
|
156 |
+
return f"Note: Partial subtitles returned. To get the next chunk, use chunk_number = {chunk_number + 1}.\n\nSubtitles:{chunked_text}"
|
157 |
+
|
158 |
+
class Points(BaseModel):
|
159 |
+
"""Pydantic model for representing extracted points."""
|
160 |
+
point: str = Field(description="The main topic, theme, or subject extracted from the subtitle.")
|
161 |
+
context: str = Field(description="The context or brief explanation of the main point.")
|
162 |
+
emoji: str = Field(description="An emoji that represents or summarizes the main point.")
|
163 |
+
timestamp: float = Field(description="The timestamp (in floating-point number) from the video where the main point is mentioned.")
|
164 |
+
|
165 |
+
class MainPointsExtractor:
|
166 |
+
"""
|
167 |
+
A tool for extracting and formatting main points from YouTube video transcripts.
|
168 |
+
|
169 |
+
This class provides methods to process transcripts and identify key points
|
170 |
+
using natural language processing techniques.
|
171 |
+
"""
|
172 |
+
|
173 |
+
class Info(BaseModel):
|
174 |
+
"""Pydantic model for representing a collection of points."""
|
175 |
+
points: List[Points]
|
176 |
+
|
177 |
+
@staticmethod
|
178 |
+
@tool(return_direct=True)
|
179 |
+
@log_errors
|
180 |
+
def get_youtube_video_main_points(youtube_video_id: str) -> str:
|
181 |
+
"""
|
182 |
+
Extracts and formats main points from a YouTube video transcript.
|
183 |
+
|
184 |
+
Args:
|
185 |
+
youtube_video_id (str): The ID of the YouTube video.
|
186 |
+
|
187 |
+
Returns:
|
188 |
+
str: Formatted string of main points extracted from the video.
|
189 |
+
"""
|
190 |
+
try:
|
191 |
+
transcript = MainPointsExtractor._get_youtube_video_transcript(youtube_video_id)
|
192 |
+
main_points = MainPointsExtractor._extract_main_points(transcript)
|
193 |
+
return MainPointsExtractor._format_youtube_comment(main_points)
|
194 |
+
except Exception as e:
|
195 |
+
logger.error(f"Error in get_youtube_video_main_points: {str(e)}")
|
196 |
+
return f"Error extracting main points: {str(e)}"
|
197 |
+
|
198 |
+
@staticmethod
|
199 |
+
@log_errors
|
200 |
+
def _get_youtube_video_transcript(youtube_video_id: str) -> str:
|
201 |
+
"""
|
202 |
+
Fetches the transcript for a YouTube video.
|
203 |
+
|
204 |
+
Args:
|
205 |
+
youtube_video_id (str): The ID of the YouTube video.
|
206 |
+
|
207 |
+
Returns:
|
208 |
+
str: The full transcript of the video.
|
209 |
+
|
210 |
+
Raises:
|
211 |
+
Exception: If there's an error fetching the transcript.
|
212 |
+
"""
|
213 |
+
try:
|
214 |
+
transcript_json = YouTubeTranscriptApi.get_transcript(youtube_video_id)
|
215 |
+
transcript_data = [f"{entry['start']:.2f}: {entry['text']} " for entry in transcript_json]
|
216 |
+
return "".join(transcript_data)
|
217 |
+
except Exception as e:
|
218 |
+
logger.error(f"Error fetching transcript: {str(e)}")
|
219 |
+
raise
|
220 |
+
|
221 |
+
@staticmethod
|
222 |
+
@functools.lru_cache(maxsize=16)
|
223 |
+
def _extract_main_points(transcript: str) -> List[Dict[str, Any]]:
|
224 |
+
"""
|
225 |
+
Extracts main points from the transcript using NLP techniques.
|
226 |
+
|
227 |
+
This method is cached to improve performance for repeated calls.
|
228 |
+
|
229 |
+
Args:
|
230 |
+
transcript (str): The full transcript of the video.
|
231 |
+
|
232 |
+
Returns:
|
233 |
+
List[Dict[str, Any]]: A list of dictionaries containing extracted main points.
|
234 |
+
"""
|
235 |
+
main_points_extraction_function = [convert_to_openai_function(MainPointsExtractor.Info)]
|
236 |
+
|
237 |
+
model = ChatOpenAI(temperature=0)
|
238 |
+
extraction_model = model.bind(functions=main_points_extraction_function, function_call={"name": "Info"})
|
239 |
+
|
240 |
+
prompt = ChatPromptTemplate.from_messages([("human", "{input}")])
|
241 |
+
extraction_chain = prompt | extraction_model | JsonKeyOutputFunctionsParser(key_name="points")
|
242 |
+
|
243 |
+
text_splitter = RecursiveCharacterTextSplitter(chunk_overlap=0, chunk_size=8192, separators=[f" {char}" for char in "123456789"])
|
244 |
+
|
245 |
+
prep = RunnableLambda(lambda x: [{"input": doc} for doc in text_splitter.split_text(x)])
|
246 |
+
|
247 |
+
chain = prep | extraction_chain.map() | MainPointsExtractor._flatten
|
248 |
+
|
249 |
+
return chain.invoke(transcript)
|
250 |
+
|
251 |
+
@staticmethod
|
252 |
+
@log_errors
|
253 |
+
def _flatten(matrix):
|
254 |
+
"""Flattens a 2D list into a 1D list."""
|
255 |
+
return [item for row in matrix for item in row]
|
256 |
+
|
257 |
+
@staticmethod
|
258 |
+
@log_errors
|
259 |
+
def _format_youtube_comment(json_data: List[Dict[str, Any]]) -> str:
|
260 |
+
"""
|
261 |
+
Formats extracted main points into a YouTube-style comment.
|
262 |
+
|
263 |
+
Args:
|
264 |
+
json_data (List[Dict[str, Any]]): List of dictionaries containing main points.
|
265 |
+
|
266 |
+
Returns:
|
267 |
+
str: Formatted string representing the main points as a YouTube comment.
|
268 |
+
"""
|
269 |
+
def _format_timestamp(seconds):
|
270 |
+
hours = int(seconds // 3600)
|
271 |
+
minutes = int((seconds % 3600) // 60)
|
272 |
+
seconds = int(seconds % 60)
|
273 |
+
return f"{hours:02}:{minutes:02}:{seconds:02}"
|
274 |
+
|
275 |
+
formatted_comment = ""
|
276 |
+
for entry in json_data:
|
277 |
+
timestamp = _format_timestamp(entry['timestamp'])
|
278 |
+
emoji = entry['emoji']
|
279 |
+
point = entry['point']
|
280 |
+
context = entry['context']
|
281 |
+
formatted_comment += f"{timestamp} {emoji} {point}: {context}\n"
|
282 |
+
|
283 |
+
return formatted_comment.strip()
|
284 |
+
|
285 |
+
class Summary(BaseModel):
|
286 |
+
"""Pydantic model for representing extracted summary."""
|
287 |
+
summary: str = Field(description="Extract detailed information from the content.")
|
288 |
+
|
289 |
+
class SummaryExtractor:
|
290 |
+
"""
|
291 |
+
A tool for extracting and formatting summaries from YouTube video transcripts.
|
292 |
+
|
293 |
+
This class provides methods to process transcripts and generate concise summaries
|
294 |
+
using natural language processing techniques.
|
295 |
+
"""
|
296 |
+
|
297 |
+
class Info(BaseModel):
|
298 |
+
"""Pydantic model for representing a collection of summaries."""
|
299 |
+
summary: List[Summary]
|
300 |
+
|
301 |
+
@staticmethod
|
302 |
+
@tool(return_direct=False)
|
303 |
+
@log_errors
|
304 |
+
def get_youtube_video_summary(youtube_video_id: str) -> str:
|
305 |
+
"""
|
306 |
+
Extracts and formats a summary from a YouTube video transcript.
|
307 |
+
|
308 |
+
Args:
|
309 |
+
youtube_video_id (str): The ID of the YouTube video.
|
310 |
+
|
311 |
+
Returns:
|
312 |
+
str: Formatted string of the summary extracted from the video.
|
313 |
+
"""
|
314 |
+
try:
|
315 |
+
transcript = SummaryExtractor._get_youtube_video_transcript(youtube_video_id)
|
316 |
+
summary = SummaryExtractor._extract_summary(transcript)
|
317 |
+
return SummaryExtractor._format_summary(summary)
|
318 |
+
except Exception as e:
|
319 |
+
logger.error(f"Error in get_youtube_video_summary: {str(e)}")
|
320 |
+
return f"Error extracting summary: {str(e)}"
|
321 |
+
|
322 |
+
@staticmethod
|
323 |
+
@log_errors
|
324 |
+
def _get_youtube_video_transcript(youtube_video_id: str) -> str:
|
325 |
+
"""
|
326 |
+
Fetches the transcript for a YouTube video.
|
327 |
+
|
328 |
+
Args:
|
329 |
+
youtube_video_id (str): The ID of the YouTube video.
|
330 |
+
|
331 |
+
Returns:
|
332 |
+
str: The full transcript of the video.
|
333 |
+
|
334 |
+
Raises:
|
335 |
+
Exception: If there's an error fetching the transcript.
|
336 |
+
"""
|
337 |
+
try:
|
338 |
+
transcript_json = YouTubeTranscriptApi.get_transcript(youtube_video_id)
|
339 |
+
transcript_data = [entry['text'] for entry in transcript_json]
|
340 |
+
return " ".join(transcript_data)
|
341 |
+
except Exception as e:
|
342 |
+
logger.error(f"Error fetching transcript: {str(e)}")
|
343 |
+
raise
|
344 |
+
|
345 |
+
@staticmethod
|
346 |
+
@functools.lru_cache(maxsize=16)
|
347 |
+
def _extract_summary(transcript: str) -> List[Summary]:
|
348 |
+
"""
|
349 |
+
Extracts a summary from a YouTube video transcript.
|
350 |
+
|
351 |
+
Args:
|
352 |
+
transcript (str): The full transcript of the video.
|
353 |
+
|
354 |
+
Returns:
|
355 |
+
Summary: A Summary object containing the extracted summary.
|
356 |
+
"""
|
357 |
+
summary_extraction_function = [convert_to_openai_function(SummaryExtractor.Info)]
|
358 |
+
|
359 |
+
model = ChatOpenAI(temperature=0)
|
360 |
+
extraction_model = model.bind(functions=summary_extraction_function, function_call={"name": "Info"})
|
361 |
+
|
362 |
+
prompt = ChatPromptTemplate.from_messages([("human", "{input}")])
|
363 |
+
|
364 |
+
extraction_chain = prompt | extraction_model | JsonKeyOutputFunctionsParser(key_name="summary")
|
365 |
+
|
366 |
+
text_splitter = RecursiveCharacterTextSplitter(chunk_overlap=0, chunk_size=8192, separators=[f" {char}" for char in "ABCDEFGHIJKLMNOPQRSTUVWXYZ"])
|
367 |
+
|
368 |
+
prep = RunnableLambda(lambda x: [{"input": doc} for doc in text_splitter.split_text(x)])
|
369 |
+
|
370 |
+
chain = prep | extraction_chain.map() | MainPointsExtractor._flatten
|
371 |
+
|
372 |
+
return chain.invoke(transcript)
|
373 |
+
|
374 |
+
@staticmethod
|
375 |
+
def _format_summary(summaries: List[Summary]) -> str:
|
376 |
+
"""
|
377 |
+
Formats the list of summaries into a single string.
|
378 |
+
Args:
|
379 |
+
summaries (List[Summary]): List of Summary objects.
|
380 |
+
Returns:
|
381 |
+
str: A formatted string containing all summaries.
|
382 |
+
"""
|
383 |
+
return "\n\n".join([s["summary"] for s in summaries])
|
384 |
+
|
385 |
+
class YouTubeAgent:
|
386 |
+
"""
|
387 |
+
An agent for interacting with YouTube videos and processing user queries.
|
388 |
+
|
389 |
+
This class sets up the necessary components for an AI agent that can understand
|
390 |
+
and respond to user queries about YouTube videos.
|
391 |
+
"""
|
392 |
+
|
393 |
+
def __init__(self):
|
394 |
+
"""Initializes the YouTubeAgent with necessary tools and components."""
|
395 |
+
self.tools = [
|
396 |
+
YouTubeTranscriptTool.get_transcript_with_timestamps,
|
397 |
+
YouTubeTranscriptTool.get_transcript_without_timestamps,
|
398 |
+
MainPointsExtractor.get_youtube_video_main_points,
|
399 |
+
SummaryExtractor.get_youtube_video_summary
|
400 |
+
]
|
401 |
+
self.sys_message = "You are a helpful assistant."
|
402 |
+
self.functions = [convert_to_openai_function(f) for f in self.tools]
|
403 |
+
self.model = ChatOpenAI(temperature=0).bind(functions=self.functions)
|
404 |
+
self.prompt = ChatPromptTemplate.from_messages([
|
405 |
+
("system", self.sys_message),
|
406 |
+
MessagesPlaceholder(variable_name="history"),
|
407 |
+
("user", "{input}"),
|
408 |
+
MessagesPlaceholder(variable_name="agent_scratchpad")
|
409 |
+
])
|
410 |
+
self.agent_chain = RunnablePassthrough.assign(
|
411 |
+
agent_scratchpad= lambda x: format_to_openai_functions(x["intermediate_steps"])
|
412 |
+
) | self.prompt | self.model | OpenAIFunctionsAgentOutputParser()
|
413 |
+
self.memory = ConversationBufferWindowMemory(k=3, return_messages=True, memory_key="history")
|
414 |
+
self.agent_executor = AgentExecutor(agent=self.agent_chain, tools=self.tools, memory=self.memory)
|
415 |
+
|
416 |
+
@log_errors
|
417 |
+
def invoke(self, input_text: str) -> str:
|
418 |
+
"""
|
419 |
+
Processes a user input and returns the agent's response.
|
420 |
+
|
421 |
+
Args:
|
422 |
+
input_text (str): The user's input query.
|
423 |
+
|
424 |
+
Returns:
|
425 |
+
str: The agent's response to the user's query.
|
426 |
+
"""
|
427 |
+
try:
|
428 |
+
result = self.agent_executor.invoke({"input": input_text})
|
429 |
+
return result['output']
|
430 |
+
except Exception as e:
|
431 |
+
logger.error(f"Error in YouTubeAgent.invoke: {str(e)}")
|
432 |
+
return f"An error occurred: {str(e)}"
|
433 |
+
|
434 |
+
# # Usage example
|
435 |
+
# if __name__ == "__main__":
|
436 |
+
# youtube_agent = YouTubeAgent()
|
437 |
+
# video_link = "https://www.youtube.com/watch?v=dZxbVGhpEkI"
|
438 |
+
# try:
|
439 |
+
# main_points = youtube_agent.invoke(f"Can you get summary of the following video {video_link}")
|
440 |
+
# except Exception as e:
|
441 |
+
# logger.error(f"An error occurred during processing: {str(e)}")
|
442 |
+
# print(f"An error occurred: {str(e)}")
|
443 |
+
|