File size: 5,554 Bytes
4431147
 
 
 
 
 
 
8f8b6ee
 
4431147
 
 
8f8b6ee
4431147
8f8b6ee
983c445
8f8b6ee
 
4431147
8f8b6ee
 
 
4431147
8f8b6ee
 
 
4431147
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
997e24d
4431147
997e24d
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
import os
from threading import Thread
from typing import Iterator, List, Tuple

import torch
from fastapi import FastAPI, HTTPException
from pydantic import BaseModel
from transformers import AutoTokenizer, AutoModelForCausalLM
from peft import PeftModel
import gradio as gr
from gradio import Blocks
from transformers import TextIteratorStreamer

# Load the base model and tokenizer
base_model = AutoModelForCausalLM.from_pretrained(
    'NousResearch/Llama-2-7b-chat-hf',
    trust_remote_code=True,
    device_map="auto",
    torch_dtype=torch.float16,
)
tokenizer = AutoTokenizer.from_pretrained('meta-llama/Llama-2-7b-chat-hf')

# Load the finetuned model
model = PeftModel.from_pretrained(base_model, 'FinGPT/fingpt-forecaster_dow30_llama2-7b_lora')
model = model.eval()

# Define constants
MAX_MAX_NEW_TOKENS = 2048
DEFAULT_MAX_NEW_TOKENS = 1024
MAX_INPUT_TOKEN_LENGTH = int(os.getenv("MAX_INPUT_TOKEN_LENGTH", "4096"))

# FastAPI setup
app = FastAPI()

class ChatRequest(BaseModel):
    message: str
    chat_history: List[Tuple[str, str]] = []
    system_prompt: str = ""
    max_new_tokens: int = 1024
    temperature: float = 0.6
    top_p: float = 0.9
    top_k: int = 50
    repetition_penalty: float = 1.2

@app.post("/chat/")
async def chat(request: ChatRequest):
    try:
        response = await generate_response(
            request.message,
            request.chat_history,
            request.system_prompt,
            request.max_new_tokens,
            request.temperature,
            request.top_p,
            request.top_k,
            request.repetition_penalty
        )
        return {"response": response}
    except Exception as e:
        raise HTTPException(status_code=500, detail=str(e))

async def generate_response(
    message: str,
    chat_history: List[Tuple[str, str]],
    system_prompt: str,
    max_new_tokens: int = 1024,
    temperature: float = 0.6,
    top_p: float = 0.9,
    top_k: int = 50,
    repetition_penalty: float = 1.2,
) -> str:
    conversation = []
    if system_prompt:
        conversation.append({"role": "system", "content": system_prompt})
    for user, assistant in chat_history:
        conversation.extend([{"role": "user", "content": user}, {"role": "assistant", "content": assistant}])
    conversation.append({"role": "user", "content": message})

    input_ids = tokenizer.apply_chat_template(conversation, return_tensors="pt")
    if input_ids.shape[1] > MAX_INPUT_TOKEN_LENGTH:
        input_ids = input_ids[:, -MAX_INPUT_TOKEN_LENGTH:]

    input_ids = input_ids.to(model.device)

    streamer = TextIteratorStreamer(tokenizer, timeout=10.0, skip_prompt=True, skip_special_tokens=True)
    generate_kwargs = {
        "input_ids": input_ids,
        "streamer": streamer,
        "max_new_tokens": max_new_tokens,
        "do_sample": True,
        "top_p": top_p,
        "top_k": top_k,
        "temperature": temperature,
        "num_beams": 1,
        "repetition_penalty": repetition_penalty,
    }
    t = Thread(target=model.generate, kwargs=generate_kwargs)
    t.start()

    outputs = []
    for text in streamer:
        outputs.append(text)
    return "".join(outputs)

# Gradio setup
def generate(
    message: str,
    chat_history: List[Tuple[str, str]],
    system_prompt: str,
    max_new_tokens: int = 1024,
    temperature: float = 0.6,
    top_p: float = 0.9,
    top_k: int = 50,
    repetition_penalty: float = 1.2,
) -> Iterator[str]:
    return generate_response(
        message,
        chat_history,
        system_prompt,
        max_new_tokens,
        temperature,
        top_p,
        top_k,
        repetition_penalty
    )

chat_interface = gr.ChatInterface(
    fn=generate,
    additional_inputs=[
        gr.Textbox(label="System prompt", lines=6),
        gr.Slider(
            label="Max new tokens",
            minimum=1,
            maximum=MAX_MAX_NEW_TOKENS,
            step=1,
            value=DEFAULT_MAX_NEW_TOKENS,
        ),
        gr.Slider(
            label="Temperature",
            minimum=0.1,
            maximum=4.0,
            step=0.1,
            value=0.6,
        ),
        gr.Slider(
            label="Top-p (nucleus sampling)",
            minimum=0.05,
            maximum=1.0,
            step=0.05,
            value=0.9,
        ),
        gr.Slider(
            label="Top-k",
            minimum=1,
            maximum=1000,
            step=1,
            value=50,
        ),
        gr.Slider(
            label="Repetition penalty",
            minimum=1.0,
            maximum=2.0,
            step=0.05,
            value=1.2,
        ),
    ],
    stop_btn=None,
    examples=[
        ["Hello there! How are you doing?"],
        ["Can you explain briefly to me what is the Python programming language?"],
        ["Explain the plot of Cinderella in a sentence."],
        ["How many hours does it take a man to eat a Helicopter?"],
        ["Write a 100-word article on 'Benefits of Open-Source in AI research'"],
    ],
)

with Blocks(css="style.css") as demo:
    gr.Markdown("# Llama-2 7B Chat")
    gr.Markdown("""
    This Space demonstrates the Llama-2 7B Chat model by Meta, fine-tuned for chat instructions.
    Feel free to chat with the model here or use the API to integrate it into your applications.
    """)
    chat_interface.render()
    gr.Markdown("---")
    gr.Markdown("This demo is governed by the original [license](https://huggingface.co/meta-llama/Llama-2-7b-chat-hf/blob/main/LICENSE.txt).")

if __name__ == "__main__":
    demo.queue(max_size=20).launch()