ment89 / app.py
Muhirwa12a's picture
Create app.py
fd40fa3 verified
raw
history blame
2.34 kB
import gradio as gr
import requests
import os
# Define API parameters
API_URL = "https://api-inference.huggingface.co/models/tiiuae/falcon-mamba-7b"
API_KEY = os.getenv("HUGGINGFACE_TOKEN")
# Ensure the token is available
if not API_KEY:
raise ValueError("Hugging Face API token not found. Please set HUGGINGFACE_TOKEN environment variable.")
# Set up headers for Hugging Face API authentication
headers = {
"Authorization": f"Bearer {API_KEY}"
}
# Function to query the model
def query_model(user_input):
payload = {
"inputs": user_input,
"parameters": {
"temperature": 0.7,
"max_length": 150
}
}
response = requests.post(API_URL, headers=headers, json=payload)
if response.status_code == 200:
return response.json()[0]['generated_text']
else:
return f"Error {response.status_code}: {response.text}"
# Chatbot function that manages conversation history
def chatbot(input_text, history=[]):
if input_text.lower() in ["exit", "quit"]:
return "Take care! Remember, seeking support is a strength.", history
# Append the user's message to the history
history.append(("You", input_text))
# Get the model's response
response = query_model(input_text)
# Append the model's response to the history
history.append(("Bot", response))
# Return the response and updated history for the UI
return response, history
# Gradio UI Layout
with gr.Blocks() as demo:
gr.Markdown(
"""
# πŸ§˜β€β™€οΈ Mental Health Chatbot
### Hi! I'm here to listen and provide support. How can I help you today?
"""
)
with gr.Row():
chatbot_output = gr.Chatbot(label="Chatbot", value=[])
with gr.Row():
user_input = gr.Textbox(label="Your Message", placeholder="Type your message here...", lines=2)
send_button = gr.Button("Send")
# Update chatbot output when the user submits a message
def respond(user_input, history):
response, history = chatbot(user_input, history)
return history, gr.update(value="")
# Clear the input box after sending the message
send_button.click(respond, inputs=[user_input, chatbot_output], outputs=[chatbot_output, user_input])
# Launch the Gradio app
demo.launch()