Spaces:
Running
Running
Muhirwa12a
commited on
Update app.py
Browse files
app.py
CHANGED
@@ -1,64 +1,131 @@
|
|
|
|
|
|
1 |
import gradio as gr
|
2 |
-
from huggingface_hub import InferenceClient
|
3 |
|
4 |
-
|
5 |
-
|
6 |
-
|
7 |
-
|
8 |
|
|
|
|
|
|
|
9 |
|
10 |
-
|
11 |
-
|
12 |
-
|
13 |
-
system_message,
|
14 |
-
max_tokens,
|
15 |
-
temperature,
|
16 |
-
top_p,
|
17 |
-
):
|
18 |
-
messages = [{"role": "system", "content": system_message}]
|
19 |
|
20 |
-
for
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
|
|
|
|
|
25 |
|
26 |
-
|
27 |
|
28 |
-
|
|
|
|
|
|
|
29 |
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
|
39 |
-
|
40 |
-
|
|
|
|
|
41 |
|
|
|
|
|
|
|
|
|
42 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
43 |
"""
|
44 |
-
|
45 |
-
|
46 |
-
|
47 |
-
|
48 |
-
|
49 |
-
|
50 |
-
|
51 |
-
|
52 |
-
gr.Slider(
|
53 |
-
minimum=0.1,
|
54 |
-
maximum=1.0,
|
55 |
-
value=0.95,
|
56 |
-
step=0.05,
|
57 |
-
label="Top-p (nucleus sampling)",
|
58 |
-
),
|
59 |
-
],
|
60 |
)
|
61 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
62 |
|
63 |
if __name__ == "__main__":
|
64 |
-
demo.launch()
|
|
|
1 |
+
import os
|
2 |
+
import pandas as pd
|
3 |
import gradio as gr
|
|
|
4 |
|
5 |
+
###################################
|
6 |
+
# 1. Load and Chunk CSV Data
|
7 |
+
###################################
|
8 |
+
df = pd.read_csv("datasets.csv")
|
9 |
|
10 |
+
# We will chunk the rows in groups of 1,000
|
11 |
+
chunk_size = 1000
|
12 |
+
context_data = []
|
13 |
|
14 |
+
for start_index in range(0, len(df), chunk_size):
|
15 |
+
# Collect rows for one chunk
|
16 |
+
chunk_rows = df.iloc[start_index : start_index + chunk_size]
|
|
|
|
|
|
|
|
|
|
|
|
|
17 |
|
18 |
+
# Build a single text block for these rows
|
19 |
+
text_block = ""
|
20 |
+
for row_idx in range(len(chunk_rows)):
|
21 |
+
row_data = chunk_rows.iloc[row_idx]
|
22 |
+
for col_name in df.columns:
|
23 |
+
text_block += f"{col_name}: {str(row_data[col_name])} "
|
24 |
+
text_block += "\n" # separate rows for clarity
|
25 |
|
26 |
+
context_data.append(text_block)
|
27 |
|
28 |
+
###################################
|
29 |
+
# 2. Retrieve API Key
|
30 |
+
###################################
|
31 |
+
groq_key = os.environ.get('groq_api_keys')
|
32 |
|
33 |
+
###################################
|
34 |
+
# 3. Language Model & Embeddings
|
35 |
+
###################################
|
36 |
+
from langchain_groq import ChatGroq
|
37 |
+
llm = ChatGroq(
|
38 |
+
model="llama-3.1-70b-versatile",
|
39 |
+
api_key=groq_key
|
40 |
+
)
|
41 |
|
42 |
+
from langchain_huggingface import HuggingFaceEmbeddings
|
43 |
+
embed_model = HuggingFaceEmbeddings(
|
44 |
+
model_name="mixedbread-ai/mxbai-embed-large-v1"
|
45 |
+
)
|
46 |
|
47 |
+
###################################
|
48 |
+
# 4. Vector Store
|
49 |
+
###################################
|
50 |
+
from langchain_chroma import Chroma
|
51 |
|
52 |
+
vectorstore = Chroma(
|
53 |
+
collection_name="professional_medical_store",
|
54 |
+
embedding_function=embed_model,
|
55 |
+
persist_directory="./",
|
56 |
+
)
|
57 |
+
|
58 |
+
# Add chunked data to the vector store
|
59 |
+
vectorstore.add_texts(context_data)
|
60 |
+
retriever = vectorstore.as_retriever()
|
61 |
+
|
62 |
+
###################################
|
63 |
+
# 5. Prompt Configuration
|
64 |
+
###################################
|
65 |
+
from langchain_core.prompts import PromptTemplate
|
66 |
+
from langchain_core.runnables import RunnablePassthrough
|
67 |
+
from langchain_core.output_parsers import StrOutputParser
|
68 |
+
|
69 |
+
prompt_template = """
|
70 |
+
You are a supportive and professional mental-health consultant with extensive medical knowledge.
|
71 |
+
Speak compassionately while maintaining a calm, informative tone.
|
72 |
+
Use the context to answer questions about mental well-being or related medical considerations.
|
73 |
+
If you do not know the answer, say so without hesitation.
|
74 |
+
Focus on providing actionable insights without explicitly mentioning the context.
|
75 |
+
Always encourage users to seek professional or emergency help where appropriate.
|
76 |
+
|
77 |
+
Context: {context}
|
78 |
+
Question: {question}
|
79 |
+
Answer:
|
80 |
"""
|
81 |
+
|
82 |
+
rag_prompt = PromptTemplate.from_template(prompt_template)
|
83 |
+
|
84 |
+
rag_chain = (
|
85 |
+
{"context": retriever, "question": RunnablePassthrough()}
|
86 |
+
| rag_prompt
|
87 |
+
| llm
|
88 |
+
| StrOutputParser()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
89 |
)
|
90 |
|
91 |
+
###################################
|
92 |
+
# 6. Gradio Interface
|
93 |
+
###################################
|
94 |
+
def chain_stream(user_input):
|
95 |
+
partial_text = ""
|
96 |
+
for new_text in rag_chain.stream(user_input):
|
97 |
+
partial_text += new_text
|
98 |
+
yield partial_text
|
99 |
+
|
100 |
+
examples = [
|
101 |
+
"I have been feeling anxious and unable to focus. Any recommendations?",
|
102 |
+
"I've been feeling extremely tired lately—should I see a professional?"
|
103 |
+
]
|
104 |
+
|
105 |
+
disclaimer = (
|
106 |
+
"**Disclaimer**: I am an AI language model and not a licensed healthcare professional. "
|
107 |
+
"For urgent concerns, please seek immediate help from qualified medical professionals."
|
108 |
+
)
|
109 |
+
|
110 |
+
title = "Professional Mental Health & Medical Assistant"
|
111 |
+
|
112 |
+
demo = gr.Interface(
|
113 |
+
fn=chain_stream,
|
114 |
+
inputs=gr.Textbox(
|
115 |
+
lines=3,
|
116 |
+
placeholder="Ask your question or describe your situation here..."
|
117 |
+
),
|
118 |
+
outputs="text",
|
119 |
+
title=title,
|
120 |
+
description=(
|
121 |
+
"Welcome to your mental-health and medical information companion. "
|
122 |
+
"I provide professional, empathetic, and trustworthy guidance. "
|
123 |
+
"Please remember this is not a substitute for direct professional consultation."
|
124 |
+
),
|
125 |
+
article=disclaimer,
|
126 |
+
examples=examples,
|
127 |
+
allow_flagging="never",
|
128 |
+
)
|
129 |
|
130 |
if __name__ == "__main__":
|
131 |
+
demo.launch(server_name="0.0.0.0", server_port=7860)
|