Tonic's picture
add os
36622e0 unverified
raw
history blame
7.23 kB
# utils/oneclick.py
from typing import Tuple, Optional, Dict
from .meldrx import MeldRxAPI
from .responseparser import PatientDataExtractor
from .pdfutils import PDFGenerator
import logging
from huggingface_hub import InferenceClient
import os
logger = logging.getLogger(__name__)
HF_TOKEN = os.getenv("HF_TOKEN")
if not HF_TOKEN:
raise ValueError("HF_TOKEN environment variable not set.")
client = InferenceClient(api_key=HF_TOKEN)
MODEL_NAME = "meta-llama/Llama-3.3-70B-Instruct"
def generate_ai_discharge_summary(patient_dict: Dict[str, str]) -> Optional[str]:
"""Generate a discharge summary using AI based on extracted patient data."""
try:
# Use the formatted summary as input
formatted_summary = format_discharge_summary(patient_dict)
logger.info("Generating AI discharge summary with patient info: %s", formatted_summary)
messages = [
{
"role": "assistant",
"content": (
"You are a senior medical practitioner tasked with creating discharge summaries. "
"Generate a complete discharge summary based on the provided patient information."
)
},
{"role": "user", "content": formatted_summary}
]
stream = client.chat.completions.create(
model=MODEL_NAME,
messages=messages,
temperature=0.4,
max_tokens=3584,
top_p=0.7,
stream=True
)
discharge_summary = ""
for chunk in stream:
content = chunk.choices[0].delta.content
if content:
discharge_summary += content
logger.info("AI discharge summary generated successfully")
return discharge_summary.strip()
except Exception as e:
logger.error(f"Error generating AI discharge summary: {str(e)}", exc_info=True)
return None
def generate_discharge_paper_one_click(
api: MeldRxAPI,
patient_id: str = "",
first_name: str = "",
last_name: str = ""
) -> Tuple[Optional[str], str, Optional[str], Optional[str]]:
"""
Generate a discharge summary PDF with one click using MeldRx API data.
Returns:
Tuple of (pdf_path, status_message, basic_summary, ai_summary)
"""
try:
patients_data = api.get_patients()
if not patients_data or "entry" not in patients_data:
return None, "Failed to fetch patient data from MeldRx API", None, None
extractor = PatientDataExtractor(patients_data, "json")
if not extractor.patients:
return None, "No patients found in the data", None, None
matching_patients = []
for i in range(len(extractor.patients)):
extractor.set_patient_by_index(i)
patient_data = extractor.get_patient_dict()
patient_data.setdefault('id', 'unknown')
patient_data.setdefault('first_name', '')
patient_data.setdefault('last_name', '')
if (not patient_id or patient_data.get("id", "") == patient_id) and \
(not first_name or patient_data.get("first_name", "").lower() == first_name.lower()) and \
(not last_name or patient_data.get("last_name", "").lower() == last_name.lower()):
matching_patients.append(patient_data)
if not matching_patients:
return None, "No matching patients found with the provided criteria", None, None
patient_data = matching_patients[0]
extractor.set_patient_by_index(0)
# Generate both basic and AI summaries
basic_summary = format_discharge_summary(patient_data)
ai_summary = generate_ai_discharge_summary(patient_data)
if not ai_summary:
return None, "Failed to generate AI summary", basic_summary, None
pdf_gen = PDFGenerator()
filename = f"discharge_{patient_data.get('id', 'unknown')}_{patient_data.get('last_name', 'patient')}.pdf"
pdf_path = pdf_gen.generate_pdf_from_text(ai_summary, filename)
if pdf_path:
return pdf_path, "Discharge summary generated successfully", basic_summary, ai_summary
return None, "Failed to generate PDF file", basic_summary, ai_summary
except Exception as e:
logger.error(f"Error in one-click discharge generation: {str(e)}", exc_info=True)
return None, f"Error generating discharge summary: {str(e)}", None, None
def format_discharge_summary(patient_data: dict) -> str:
"""Format patient data into a discharge summary text."""
patient_data.setdefault('name_prefix', '')
patient_data.setdefault('first_name', '')
patient_data.setdefault('last_name', '')
patient_data.setdefault('dob', 'Unknown')
patient_data.setdefault('age', 'Unknown')
patient_data.setdefault('sex', 'Unknown')
patient_data.setdefault('id', 'Unknown')
patient_data.setdefault('address', 'Unknown')
patient_data.setdefault('city', 'Unknown')
patient_data.setdefault('state', 'Unknown')
patient_data.setdefault('zip_code', 'Unknown')
patient_data.setdefault('phone', 'Unknown')
patient_data.setdefault('admission_date', 'Unknown')
patient_data.setdefault('discharge_date', 'Unknown')
patient_data.setdefault('diagnosis', 'Unknown')
patient_data.setdefault('medications', 'None specified')
patient_data.setdefault('doctor_first_name', 'Unknown')
patient_data.setdefault('doctor_last_name', 'Unknown')
patient_data.setdefault('hospital_name', 'Unknown')
patient_data.setdefault('doctor_address', 'Unknown')
patient_data.setdefault('doctor_city', 'Unknown')
patient_data.setdefault('doctor_state', 'Unknown')
patient_data.setdefault('doctor_zip', 'Unknown')
summary = [
"DISCHARGE SUMMARY",
"",
"PATIENT INFORMATION",
f"Name: {patient_data['name_prefix']} {patient_data['first_name']} {patient_data['last_name']}".strip(),
f"Date of Birth: {patient_data['dob']}",
f"Age: {patient_data['age']}",
f"Gender: {patient_data['sex']}",
f"Patient ID: {patient_data['id']}",
"",
"CONTACT INFORMATION",
f"Address: {patient_data['address']}",
f"City: {patient_data['city']}, {patient_data['state']} {patient_data['zip_code']}",
f"Phone: {patient_data['phone']}",
"",
"ADMISSION INFORMATION",
f"Admission Date: {patient_data['admission_date']}",
f"Discharge Date: {patient_data['discharge_date']}",
f"Diagnosis: {patient_data['diagnosis']}",
"",
"MEDICATIONS",
f"{patient_data['medications']}",
"",
"PHYSICIAN INFORMATION",
f"Physician: Dr. {patient_data['doctor_first_name']} {patient_data['doctor_last_name']}".strip(),
f"Hospital: {patient_data['hospital_name']}",
f"Address: {patient_data['doctor_address']}",
f"City: {patient_data['doctor_city']}, {patient_data['doctor_state']} {patient_data['doctor_zip']}",
]
return "\n".join(line for line in summary if line.strip() or line == "")