refactor app
Browse files- README.md +1 -1
- app.py +418 -0
- commandr.py → old/commandr.py +0 -0
- extractcode.py → old/extractcode.py +0 -0
- hospital.py → old/hospital.py +0 -0
- interfacehospital.py → old/interfacehospital.py +0 -0
- llamaprompt.py → old/llamaprompt.py +0 -0
- meldrxtester.py → old/meldrxtester.py +1 -1
- meldrxtester2.py → old/meldrxtester2.py +1 -1
- qwenprompt.py → old/qwenprompt.py +0 -0
- test_meldrx.py → old/test_meldrx.py +1 -1
- wound.py → old/wound.py +0 -0
- prompts.py +31 -0
- utils/callbackmanager.py +152 -0
- callbackmanager.py → utils/generators.py +206 -878
- meldrx.py → utils/meldrx.py +0 -0
README.md
CHANGED
@@ -5,7 +5,7 @@ colorFrom: gray
|
|
5 |
colorTo: pink
|
6 |
sdk: gradio
|
7 |
sdk_version: 5.20.0
|
8 |
-
app_file:
|
9 |
pinned: true
|
10 |
license: mit
|
11 |
short_description: Provides guardrails and discharge summaries with compliance
|
|
|
5 |
colorTo: pink
|
6 |
sdk: gradio
|
7 |
sdk_version: 5.20.0
|
8 |
+
app_file: app.py
|
9 |
pinned: true
|
10 |
license: mit
|
11 |
short_description: Provides guardrails and discharge summaries with compliance
|
app.py
ADDED
@@ -0,0 +1,418 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
from utils.meldrx import MeldRxAPI
|
3 |
+
import json
|
4 |
+
import os
|
5 |
+
import tempfile
|
6 |
+
from datetime import datetime
|
7 |
+
import traceback
|
8 |
+
import logging
|
9 |
+
from huggingface_hub import InferenceClient # Import InferenceClient
|
10 |
+
from urllib.parse import urlparse, parse_qs # Import URL parsing utilities
|
11 |
+
from utils.callbackmanager import CallbackManager
|
12 |
+
from prompts import system_instructions
|
13 |
+
# Set up logging
|
14 |
+
logging.basicConfig(level=logging.INFO)
|
15 |
+
logger = logging.getLogger(__name__)
|
16 |
+
|
17 |
+
# Import PDF utilities
|
18 |
+
from pdfutils import PDFGenerator, generate_discharge_summary
|
19 |
+
|
20 |
+
# Import necessary libraries for new file types and AI analysis functions
|
21 |
+
import pydicom # For DICOM
|
22 |
+
import hl7 # For HL7
|
23 |
+
from xml.etree import ElementTree # For XML and CCDA
|
24 |
+
from pypdf import PdfReader # For PDF
|
25 |
+
import csv # For CSV
|
26 |
+
import io # For IO operations
|
27 |
+
from PIL import Image # For image handling
|
28 |
+
|
29 |
+
from utils.generators import extract_auth_code_from_url, generate_pdf_from_meldrx, generate_ai_discharge_content, generate_pdf_from_meldrx_with_ai_content, extract_section, generate_discharge_paper_one_click, generate_pdf_from_form, generate_discharge_summary, generate_ai_discharge_content, analyze_dicom_file_with_ai, analyze_hl7_file_with_ai, analyze_cda_xml_file_with_ai, analyze_pdf_file_with_ai, analyze_csv_file_with_ai, generate_pdf_from_form , generate_discharge_paper_one_click , generate_ai_discharge_content , extract_section , generate_pdf_from_meldrx_with_ai_content
|
30 |
+
|
31 |
+
|
32 |
+
# Initialize Inference Client - Ensure YOUR_HF_TOKEN is set in environment variables or replace with your actual token
|
33 |
+
HF_TOKEN = os.getenv("HF_TOKEN") # Or replace with your actual token string
|
34 |
+
if not HF_TOKEN:
|
35 |
+
raise ValueError(
|
36 |
+
"HF_TOKEN environment variable not set. Please set your Hugging Face API token."
|
37 |
+
)
|
38 |
+
client = InferenceClient(api_key=HF_TOKEN)
|
39 |
+
model_name = "meta-llama/Llama-3.3-70B-Instruct" # Specify the model to use
|
40 |
+
|
41 |
+
|
42 |
+
def display_form(first_name, last_name, middle_initial, dob, age, sex, address, city, state, zip_code, doctor_first_name, doctor_last_name, doctor_middle_initial, hospital_name, doctor_address, doctor_city, doctor_state, doctor_zip, admission_date, referral_source, admission_method, discharge_date, discharge_reason, date_of_death, diagnosis, procedures, medications, preparer_name, preparer_job_title,):
|
43 |
+
form = f"""
|
44 |
+
<div style='color:#00FFFF; font-family: monospace;'>
|
45 |
+
**Patient Discharge Form** <br>
|
46 |
+
- Name: {first_name} {middle_initial} {last_name} <br>
|
47 |
+
- Date of Birth: {dob}, Age: {age}, Sex: {sex} <br>
|
48 |
+
- Address: {address}, {city}, {state}, {zip_code} <br>
|
49 |
+
- Doctor: {doctor_first_name} {doctor_middle_initial} {doctor_last_name} <br>
|
50 |
+
- Hospital/Clinic: {hospital_name} <br>
|
51 |
+
- Doctor Address: {doctor_address}, {doctor_city}, {doctor_state}, {doctor_zip} <br>
|
52 |
+
- Admission Date: {admission_date}, Source: {referral_source}, Method: {admission_method} <br>
|
53 |
+
- Discharge Date: {discharge_date}, Reason: {discharge_reason} <br>
|
54 |
+
- Date of Death: {date_of_death} <br>
|
55 |
+
- Diagnosis: {diagnosis} <br>
|
56 |
+
- Procedures: {procedures} <br>
|
57 |
+
- Medications: {medications} <br>
|
58 |
+
- Prepared By: {preparer_name}, {preparer_job_title}
|
59 |
+
</div>
|
60 |
+
"""
|
61 |
+
return form
|
62 |
+
|
63 |
+
|
64 |
+
|
65 |
+
# Create a simplified interface to avoid complex component interactions
|
66 |
+
CALLBACK_MANAGER = CallbackManager(
|
67 |
+
redirect_uri="https://multitransformer-discharge-guard.hf.space/callback",
|
68 |
+
client_secret=None,
|
69 |
+
)
|
70 |
+
|
71 |
+
|
72 |
+
def generate_discharge_paper_one_click():
|
73 |
+
"""One-click function to fetch patient data and generate discharge paper with AI Content."""
|
74 |
+
patient_data_str = CALLBACK_MANAGER.get_patient_data()
|
75 |
+
if (
|
76 |
+
patient_data_str.startswith("Not authenticated")
|
77 |
+
or patient_data_str.startswith("Failed")
|
78 |
+
or patient_data_str.startswith("Error")
|
79 |
+
):
|
80 |
+
return None, patient_data_str # Return error message if authentication or data fetch fails
|
81 |
+
|
82 |
+
try:
|
83 |
+
patient_data = json.loads(patient_data_str)
|
84 |
+
|
85 |
+
# --- AI Content Generation for Discharge Summary ---
|
86 |
+
# This is a placeholder - Replace with actual AI call using InferenceClient and patient_data to generate content
|
87 |
+
ai_generated_content = generate_ai_discharge_content(
|
88 |
+
patient_data
|
89 |
+
) # Placeholder AI function
|
90 |
+
|
91 |
+
if not ai_generated_content:
|
92 |
+
return None, "Error: AI content generation failed."
|
93 |
+
|
94 |
+
# --- PDF Generation with AI Content ---
|
95 |
+
pdf_path, status_message = generate_pdf_from_meldrx_with_ai_content(
|
96 |
+
patient_data, ai_generated_content
|
97 |
+
) # Function to generate PDF with AI content
|
98 |
+
|
99 |
+
if pdf_path:
|
100 |
+
return pdf_path, status_message
|
101 |
+
else:
|
102 |
+
return None, status_message # Return status message if PDF generation fails
|
103 |
+
|
104 |
+
except json.JSONDecodeError:
|
105 |
+
return None, "Error: Patient data is not in valid JSON format."
|
106 |
+
except Exception as e:
|
107 |
+
return None, f"Error during discharge paper generation: {str(e)}"
|
108 |
+
|
109 |
+
|
110 |
+
|
111 |
+
# Define the cyberpunk theme - using a dark base and neon accents
|
112 |
+
cyberpunk_theme = gr.themes.Monochrome(
|
113 |
+
primary_hue="cyan",
|
114 |
+
secondary_hue="pink",
|
115 |
+
neutral_hue="slate",
|
116 |
+
font=["Source Code Pro", "monospace"], # Retro monospace font
|
117 |
+
font_mono=["Source Code Pro", "monospace"]
|
118 |
+
)
|
119 |
+
|
120 |
+
# Create the UI with the cyberpunk theme
|
121 |
+
with gr.Blocks(theme=cyberpunk_theme) as demo: # Apply the theme here
|
122 |
+
gr.Markdown("<h1 style='color:#00FFFF; text-shadow: 0 0 5px #00FFFF;'>Discharge Guard <span style='color:#FF00FF; text-shadow: 0 0 5px #FF00FF;'>Cyber</span></h1>") # Cyberpunk Title
|
123 |
+
|
124 |
+
with gr.Tab("Authenticate with MeldRx", elem_classes="cyberpunk-tab"): # Optional: Class for tab styling
|
125 |
+
gr.Markdown("<h2 style='color:#00FFFF; text-shadow: 0 0 3px #00FFFF;'>SMART on FHIR Authentication</h2>") # Neon Tab Header
|
126 |
+
auth_url_output = gr.Textbox(label="Authorization URL", value=CALLBACK_MANAGER.get_auth_url(), interactive=False)
|
127 |
+
gr.Markdown("<p style='color:#A9A9A9;'>Copy the URL above, open it in a browser, log in, and paste the <span style='color:#00FFFF;'>entire redirected URL</span> from your browser's address bar below.</p>") # Subdued instructions with neon highlight
|
128 |
+
redirected_url_input = gr.Textbox(label="Redirected URL") # New textbox for redirected URL
|
129 |
+
extract_code_button = gr.Button("Extract Authorization Code", elem_classes="cyberpunk-button") # Cyberpunk button style
|
130 |
+
extracted_code_output = gr.Textbox(label="Extracted Authorization Code", interactive=False) # Textbox to show extracted code
|
131 |
+
|
132 |
+
auth_code_input = gr.Textbox(label="Authorization Code (from above, or paste manually if extraction fails)", interactive=True) # Updated label to be clearer
|
133 |
+
auth_submit = gr.Button("Submit Code for Authentication", elem_classes="cyberpunk-button") # Cyberpunk button style
|
134 |
+
auth_result = gr.HTML(label="Authentication Result") # Use HTML for styled result
|
135 |
+
|
136 |
+
patient_data_button = gr.Button("Fetch Patient Data", elem_classes="cyberpunk-button") # Cyberpunk button style
|
137 |
+
patient_data_output = gr.Textbox(label="Patient Data", lines=10)
|
138 |
+
|
139 |
+
# Add button to generate PDF from MeldRx data (No AI)
|
140 |
+
meldrx_pdf_button = gr.Button("Generate PDF from MeldRx Data (No AI)", elem_classes="cyberpunk-button") # Renamed button
|
141 |
+
meldrx_pdf_status = gr.Textbox(label="PDF Generation Status (No AI)") # Renamed status
|
142 |
+
meldrx_pdf_download = gr.File(label="Download Generated PDF (No AI)") # Renamed download
|
143 |
+
|
144 |
+
def process_redirected_url(redirected_url):
|
145 |
+
"""Processes the redirected URL to extract and display the authorization code."""
|
146 |
+
auth_code, error_message = extract_auth_code_from_url(redirected_url)
|
147 |
+
if auth_code:
|
148 |
+
return auth_code, "<span style='color:#00FF7F;'>Authorization code extracted!</span>" # Neon Green Success
|
149 |
+
else:
|
150 |
+
return "", f"<span style='color:#FF4500;'>Could not extract authorization code.</span> {error_message or ''}" # Neon Orange Error
|
151 |
+
|
152 |
+
|
153 |
+
extract_code_button.click(
|
154 |
+
fn=process_redirected_url,
|
155 |
+
inputs=redirected_url_input,
|
156 |
+
outputs=[extracted_code_output, auth_result],# Reusing auth_result for extraction status
|
157 |
+
)
|
158 |
+
|
159 |
+
auth_submit.click(
|
160 |
+
fn=CALLBACK_MANAGER.set_auth_code,
|
161 |
+
inputs=extracted_code_output, # Using extracted code as input for authentication
|
162 |
+
outputs=auth_result,
|
163 |
+
)
|
164 |
+
|
165 |
+
with gr.Tab("Patient Dashboard", elem_classes="cyberpunk-tab"): # Optional: Class for tab styling
|
166 |
+
gr.Markdown("<h2 style='color:#00FFFF; text-shadow: 0 0 3px #00FFFF;'>Patient Data</h2>") # Neon Tab Header
|
167 |
+
dashboard_output = gr.HTML("<p style='color:#A9A9A9;'>Fetch patient data from the Authentication tab first.</p>") # Subdued placeholder text
|
168 |
+
|
169 |
+
refresh_btn = gr.Button("Refresh Data", elem_classes="cyberpunk-button") # Cyberpunk button style
|
170 |
+
|
171 |
+
# Simple function to update dashboard based on fetched data
|
172 |
+
def update_dashboard():
|
173 |
+
try:
|
174 |
+
data = CALLBACK_MANAGER.get_patient_data()
|
175 |
+
if (
|
176 |
+
data.startswith("<span style='color:#FF8C00;'>Not authenticated")
|
177 |
+
or data.startswith("<span style='color:#DC143C;'>Failed")
|
178 |
+
or data.startswith("<span style='color:#FF6347;'>Error")
|
179 |
+
):
|
180 |
+
return f"<p style='color:#FF8C00;'>{data}</p>" # Show auth errors in orange
|
181 |
+
|
182 |
+
try:
|
183 |
+
# Parse the data
|
184 |
+
patients_data = json.loads(data)
|
185 |
+
patients = []
|
186 |
+
|
187 |
+
# Extract patients from bundle
|
188 |
+
for entry in patients_data.get("entry", []):
|
189 |
+
resource = entry.get("resource", {})
|
190 |
+
if resource.get("resourceType") == "Patient":
|
191 |
+
patients.append(resource)
|
192 |
+
|
193 |
+
# Generate HTML card
|
194 |
+
html = "<h3 style='color:#00FFFF; text-shadow: 0 0 2px #00FFFF;'>Patients</h3>" # Neon Sub-header
|
195 |
+
for patient in patients:
|
196 |
+
# Extract name
|
197 |
+
name = patient.get("name", [{}])[0]
|
198 |
+
given = " ".join(name.get("given", ["Unknown"]))
|
199 |
+
family = name.get("family", "Unknown")
|
200 |
+
|
201 |
+
# Extract other details
|
202 |
+
gender = patient.get("gender", "unknown").capitalize()
|
203 |
+
birth_date = patient.get("birthDate", "Unknown")
|
204 |
+
|
205 |
+
# Generate HTML card with cyberpunk styling
|
206 |
+
html += f"""
|
207 |
+
<div style="border: 1px solid #00FFFF; padding: 10px; margin: 10px 0; border-radius: 5px; background-color: #222; box-shadow: 0 0 5px #00FFFF;">
|
208 |
+
<h4 style='color:#00FFFF;'>{given} {family}</h4>
|
209 |
+
<p style='color:#A9A9A9;'><strong>Gender:</strong> <span style='color:#00FFFF;'>{gender}</span></p>
|
210 |
+
<p style='color:#A9A9A9;'><strong>Birth Date:</strong> <span style='color:#00FFFF;'>{birth_date}</span></p>
|
211 |
+
<p style='color:#A9A9A9;'><strong>ID:</strong> <span style='color:#00FFFF;'>{patient.get("id", "Unknown")}</span></p>
|
212 |
+
</div>
|
213 |
+
"""
|
214 |
+
|
215 |
+
return html
|
216 |
+
except Exception as e:
|
217 |
+
return f"<p style='color:#FF6347;'>Error parsing patient data: {str(e)}</p>" # Tomato Error
|
218 |
+
except Exception as e:
|
219 |
+
return f"<p style='color:#FF6347;'>Error fetching patient data: {str(e)}</p>" # Tomato Error
|
220 |
+
|
221 |
+
|
222 |
+
with gr.Tab("Discharge Form", elem_classes="cyberpunk-tab"): # Optional: Class for tab styling
|
223 |
+
gr.Markdown("<h2 style='color:#00FFFF; text-shadow: 0 0 3px #00FFFF;'>Patient Details</h2>") # Neon Tab Header
|
224 |
+
with gr.Row():
|
225 |
+
first_name = gr.Textbox(label="First Name")
|
226 |
+
last_name = gr.Textbox(label="Last Name")
|
227 |
+
middle_initial = gr.Textbox(label="Middle Initial")
|
228 |
+
with gr.Row():
|
229 |
+
dob = gr.Textbox(label="Date of Birth")
|
230 |
+
age = gr.Textbox(label="Age")
|
231 |
+
sex = gr.Textbox(label="Sex")
|
232 |
+
address = gr.Textbox(label="Address")
|
233 |
+
with gr.Row():
|
234 |
+
city = gr.Textbox(label="City")
|
235 |
+
state = gr.Textbox(label="State")
|
236 |
+
zip_code = gr.Textbox(label="Zip Code")
|
237 |
+
gr.Markdown("<h2 style='color:#00FFFF; text-shadow: 0 0 3px #00FFFF;'>Primary Healthcare Professional Details</h2>") # Neon Sub-header
|
238 |
+
with gr.Row():
|
239 |
+
doctor_first_name = gr.Textbox(label="Doctor's First Name")
|
240 |
+
doctor_last_name = gr.Textbox(label="Doctor's Last Name")
|
241 |
+
doctor_middle_initial = gr.Textbox(label="Doctor's Middle Initial")
|
242 |
+
hospital_name = gr.Textbox(label="Hospital/Clinic Name")
|
243 |
+
doctor_address = gr.Textbox(label="Address")
|
244 |
+
with gr.Row():
|
245 |
+
doctor_city = gr.Textbox(label="City")
|
246 |
+
doctor_state = gr.Textbox(label="State")
|
247 |
+
doctor_zip = gr.Textbox(label="Zip Code")
|
248 |
+
gr.Markdown("<h2 style='color:#00FFFF; text-shadow: 0 0 3px #00FFFF;'>Admission and Discharge Details</h2>") # Neon Sub-header
|
249 |
+
with gr.Row():
|
250 |
+
admission_date = gr.Textbox(label="Date of Admission")
|
251 |
+
referral_source = gr.Textbox(label="Source of Referral")
|
252 |
+
admission_method = gr.Textbox(label="Method of Admission")
|
253 |
+
with gr.Row():
|
254 |
+
discharge_date = gr.Textbox(label="Date of Discharge")
|
255 |
+
discharge_reason = gr.Radio(
|
256 |
+
["Treated", "Transferred", "Discharge Against Advice", "Patient Died"],
|
257 |
+
label="Discharge Reason",
|
258 |
+
)
|
259 |
+
date_of_death = gr.Textbox(label="Date of Death (if applicable)")
|
260 |
+
gr.Markdown("<h2 style='color:#00FFFF; text-shadow: 0 0 3px #00FFFF;'>Diagnosis & Procedures</h2>") # Neon Sub-header
|
261 |
+
diagnosis = gr.Textbox(label="Diagnosis")
|
262 |
+
procedures = gr.Textbox(label="Operation & Procedures")
|
263 |
+
gr.Markdown("<h2 style='color:#00FFFF; text-shadow: 0 0 3px #00FFFF;'>Medication Details</h2>") # Neon Sub-header
|
264 |
+
medications = gr.Textbox(label="Medication on Discharge")
|
265 |
+
gr.Markdown("<h2 style='color:#00FFFF; text-shadow: 0 0 3px #00FFFF;'>Prepared By</h2>") # Neon Sub-header
|
266 |
+
with gr.Row():
|
267 |
+
preparer_name = gr.Textbox(label="Name")
|
268 |
+
preparer_job_title = gr.Textbox(label="Job Title")
|
269 |
+
|
270 |
+
# Add buttons for both display form and generate PDF
|
271 |
+
with gr.Row():
|
272 |
+
submit_display = gr.Button("Display Form", elem_classes="cyberpunk-button") # Cyberpunk button style
|
273 |
+
submit_pdf = gr.Button("Generate PDF (No AI)", elem_classes="cyberpunk-button") # Renamed button to clarify no AI and styled
|
274 |
+
|
275 |
+
# Output areas
|
276 |
+
form_output = gr.HTML() # Use HTML to render styled form
|
277 |
+
pdf_output = gr.File(label="Download PDF (No AI)") # Renamed output to clarify no AI
|
278 |
+
|
279 |
+
# Connect the display form button
|
280 |
+
submit_display.click(
|
281 |
+
display_form,
|
282 |
+
inputs=[ first_name, last_name, middle_initial, dob, age, sex, address, city, state, zip_code, doctor_first_name, doctor_last_name, doctor_middle_initial, hospital_name, doctor_address, doctor_city, doctor_state, doctor_zip, admission_date, referral_source, admission_method, discharge_date, discharge_reason, date_of_death, diagnosis, procedures, medications, preparer_name, preparer_job_title,],
|
283 |
+
outputs=form_output
|
284 |
+
)
|
285 |
+
|
286 |
+
# Connect the generate PDF button (No AI version)
|
287 |
+
submit_pdf.click(
|
288 |
+
generate_pdf_from_form,
|
289 |
+
inputs=[ first_name, last_name, middle_initial, dob, age, sex, address, city, state, zip_code, doctor_first_name, doctor_last_name, doctor_middle_initial, hospital_name, doctor_address, doctor_city, doctor_state, doctor_zip, admission_date, referral_source, admission_method, discharge_date, discharge_reason, date_of_death, diagnosis, procedures, medications, preparer_name, preparer_job_title,],
|
290 |
+
outputs=pdf_output
|
291 |
+
)
|
292 |
+
|
293 |
+
with gr.Tab("Medical File Analysis", elem_classes="cyberpunk-tab"): # Optional: Class for tab styling
|
294 |
+
gr.Markdown("<h2 style='color:#00FFFF; text-shadow: 0 0 3px #00FFFF;'>Analyze Medical Files with Discharge Guard AI</h2>") # Neon Tab Header
|
295 |
+
with gr.Column():
|
296 |
+
dicom_file = gr.File(
|
297 |
+
file_types=[".dcm"], label="Upload DICOM File (.dcm)"
|
298 |
+
)
|
299 |
+
dicom_ai_output = gr.Textbox(label="DICOM Analysis Report", lines=5)
|
300 |
+
analyze_dicom_button = gr.Button("Analyze DICOM with AI", elem_classes="cyberpunk-button") # Cyberpunk button style
|
301 |
+
|
302 |
+
hl7_file = gr.File(
|
303 |
+
file_types=[".hl7"], label="Upload HL7 File (.hl7)"
|
304 |
+
)
|
305 |
+
hl7_ai_output = gr.Textbox(label="HL7 Analysis Report", lines=5)
|
306 |
+
analyze_hl7_button = gr.Button("Analyze HL7 with AI", elem_classes="cyberpunk-button") # Cyberpunk button style
|
307 |
+
|
308 |
+
xml_file = gr.File(
|
309 |
+
file_types=[".xml"], label="Upload XML File (.xml)"
|
310 |
+
)
|
311 |
+
xml_ai_output = gr.Textbox(label="XML Analysis Report", lines=5)
|
312 |
+
analyze_xml_button = gr.Button("Analyze XML with AI", elem_classes="cyberpunk-button") # Cyberpunk button style
|
313 |
+
|
314 |
+
ccda_file = gr.File(
|
315 |
+
file_types=[".xml", ".cda", ".ccd"], label="Upload CCDA File (.xml, .cda, .ccd)"
|
316 |
+
)
|
317 |
+
ccda_ai_output = gr.Textbox(label="CCDA Analysis Report", lines=5)
|
318 |
+
analyze_ccda_button = gr.Button("Analyze CCDA with AI", elem_classes="cyberpunk-button") # Cyberpunk button style
|
319 |
+
|
320 |
+
ccd_file = gr.File(
|
321 |
+
file_types=[".ccd"],
|
322 |
+
label="Upload CCD File (.ccd)",
|
323 |
+
) # Redundant, as CCDA also handles .ccd, but kept for clarity
|
324 |
+
ccd_ai_output = gr.Textbox(
|
325 |
+
label="CCD Analysis Report", lines=5
|
326 |
+
) # Redundant
|
327 |
+
analyze_ccd_button = gr.Button("Analyze CCD with AI", elem_classes="cyberpunk-button") # Cyberpunk button style # Redundant
|
328 |
+
pdf_file = gr.File(
|
329 |
+
file_types=[".pdf"], label="Upload PDF File (.pdf)"
|
330 |
+
)
|
331 |
+
pdf_ai_output = gr.Textbox(label="PDF Analysis Report", lines=5)
|
332 |
+
analyze_pdf_button = gr.Button("Analyze PDF with AI", elem_classes="cyberpunk-button") # Cyberpunk button style
|
333 |
+
|
334 |
+
csv_file = gr.File(
|
335 |
+
file_types=[".csv"], label="Upload CSV File (.csv)"
|
336 |
+
)
|
337 |
+
csv_ai_output = gr.Textbox(label="CSV Analysis Report", lines=5)
|
338 |
+
analyze_csv_button = gr.Button("Analyze CSV with AI", elem_classes="cyberpunk-button") # Cyberpunk button style
|
339 |
+
|
340 |
+
# Connect AI Analysis Buttons - using REAL AI functions now
|
341 |
+
analyze_dicom_button.click(
|
342 |
+
analyze_dicom_file_with_ai, # Call REAL AI function
|
343 |
+
inputs=dicom_file,
|
344 |
+
outputs=dicom_ai_output
|
345 |
+
)
|
346 |
+
analyze_hl7_button.click(
|
347 |
+
analyze_hl7_file_with_ai, # Call REAL AI function
|
348 |
+
inputs=hl7_file,
|
349 |
+
outputs=hl7_ai_output
|
350 |
+
)
|
351 |
+
analyze_xml_button.click(
|
352 |
+
analyze_cda_xml_file_with_ai, # Call REAL AI function
|
353 |
+
inputs=xml_file,
|
354 |
+
outputs=xml_ai_output
|
355 |
+
)
|
356 |
+
analyze_ccda_button.click(
|
357 |
+
analyze_cda_xml_file_with_ai, # Call REAL AI function
|
358 |
+
inputs=ccda_file,
|
359 |
+
outputs=ccda_ai_output
|
360 |
+
)
|
361 |
+
analyze_ccd_button.click( # Redundant button, but kept for UI if needed
|
362 |
+
analyze_cda_xml_file_with_ai, # Call REAL AI function
|
363 |
+
inputs=ccd_file,
|
364 |
+
outputs=ccd_ai_output
|
365 |
+
)
|
366 |
+
analyze_pdf_button.click(
|
367 |
+
analyze_pdf_file_with_ai, inputs=pdf_file, outputs=pdf_ai_output
|
368 |
+
)
|
369 |
+
analyze_csv_button.click(
|
370 |
+
analyze_csv_file_with_ai, inputs=csv_file, outputs=csv_ai_output
|
371 |
+
)
|
372 |
+
|
373 |
+
with gr.Tab(
|
374 |
+
"One-Click Discharge Paper (AI)", elem_classes="cyberpunk-tab"
|
375 |
+
): # New Tab for One-Click Discharge Paper with AI, styled
|
376 |
+
gr.Markdown("<h2 style='color:#00FFFF; text-shadow: 0 0 3px #00FFFF;'>One-Click Medical Discharge Paper Generation with AI Content</h2>") # Neon Tab Header
|
377 |
+
one_click_ai_pdf_button = gr.Button(
|
378 |
+
"Generate Discharge Paper with AI (One-Click)", elem_classes="cyberpunk-button"
|
379 |
+
) # Updated button label and styled
|
380 |
+
one_click_ai_pdf_status = gr.Textbox(
|
381 |
+
label="Discharge Paper Generation Status (AI)"
|
382 |
+
) # Updated status label
|
383 |
+
one_click_ai_pdf_download = gr.File(
|
384 |
+
label="Download Discharge Paper (AI)"
|
385 |
+
) # Updated download label
|
386 |
+
|
387 |
+
one_click_ai_pdf_button.click(
|
388 |
+
generate_discharge_paper_one_click, # Use the one-click function that now calls AI
|
389 |
+
inputs=[],
|
390 |
+
outputs=[one_click_ai_pdf_download, one_click_ai_pdf_status],
|
391 |
+
)
|
392 |
+
|
393 |
+
# Connect the patient data buttons
|
394 |
+
patient_data_button.click(
|
395 |
+
fn=CALLBACK_MANAGER.get_patient_data,
|
396 |
+
inputs=None,
|
397 |
+
outputs=patient_data_output
|
398 |
+
)
|
399 |
+
|
400 |
+
# Connect refresh button to update dashboard
|
401 |
+
refresh_btn.click(
|
402 |
+
fn=update_dashboard, inputs=None, outputs=dashboard_output
|
403 |
+
)
|
404 |
+
|
405 |
+
# Corrected the button click function name here to `generate_pdf_from_meldrx` (No AI PDF)
|
406 |
+
meldrx_pdf_button.click(
|
407 |
+
fn=generate_pdf_from_meldrx,
|
408 |
+
inputs=patient_data_output,
|
409 |
+
outputs=[meldrx_pdf_download, meldrx_pdf_status]
|
410 |
+
)
|
411 |
+
|
412 |
+
# Connect patient data updates to dashboard
|
413 |
+
patient_data_button.click(
|
414 |
+
fn=update_dashboard, inputs=None, outputs=dashboard_output
|
415 |
+
)
|
416 |
+
|
417 |
+
# Launch with sharing enabled for public access
|
418 |
+
demo.launch(ssr_mode=False)
|
commandr.py → old/commandr.py
RENAMED
File without changes
|
extractcode.py → old/extractcode.py
RENAMED
File without changes
|
hospital.py → old/hospital.py
RENAMED
File without changes
|
interfacehospital.py → old/interfacehospital.py
RENAMED
File without changes
|
llamaprompt.py → old/llamaprompt.py
RENAMED
File without changes
|
meldrxtester.py → old/meldrxtester.py
RENAMED
@@ -1,7 +1,7 @@
|
|
1 |
import requests
|
2 |
import json
|
3 |
from typing import Optional, Dict, Any
|
4 |
-
from meldrx import MeldRxAPI
|
5 |
|
6 |
# Testing class
|
7 |
class MeldRxAPITest:
|
|
|
1 |
import requests
|
2 |
import json
|
3 |
from typing import Optional, Dict, Any
|
4 |
+
from utils.meldrx import MeldRxAPI
|
5 |
|
6 |
# Testing class
|
7 |
class MeldRxAPITest:
|
meldrxtester2.py → old/meldrxtester2.py
RENAMED
@@ -1,7 +1,7 @@
|
|
1 |
import requests
|
2 |
import json
|
3 |
from typing import Optional, Dict, Any
|
4 |
-
from meldrx import MeldRxAPI # Assuming meldrx.py contains the updated MeldRxAPI with SMART on FHIR
|
5 |
|
6 |
class MeldRxAPITest:
|
7 |
"""A class to test the functionality of the MeldRxAPI class with SMART on FHIR and Gradio callback."""
|
|
|
1 |
import requests
|
2 |
import json
|
3 |
from typing import Optional, Dict, Any
|
4 |
+
from utils.meldrx import MeldRxAPI # Assuming meldrx.py contains the updated MeldRxAPI with SMART on FHIR
|
5 |
|
6 |
class MeldRxAPITest:
|
7 |
"""A class to test the functionality of the MeldRxAPI class with SMART on FHIR and Gradio callback."""
|
qwenprompt.py → old/qwenprompt.py
RENAMED
File without changes
|
test_meldrx.py → old/test_meldrx.py
RENAMED
@@ -3,7 +3,7 @@ from unittest.mock import patch, Mock
|
|
3 |
import json
|
4 |
from io import StringIO
|
5 |
from contextlib import redirect_stdout
|
6 |
-
from meldrx import MeldRxAPI # Import the class from meldrx.py
|
7 |
|
8 |
class TestMeldRxAPI(unittest.TestCase):
|
9 |
def setUp(self):
|
|
|
3 |
import json
|
4 |
from io import StringIO
|
5 |
from contextlib import redirect_stdout
|
6 |
+
from utils.meldrx import MeldRxAPI # Import the class from meldrx.py
|
7 |
|
8 |
class TestMeldRxAPI(unittest.TestCase):
|
9 |
def setUp(self):
|
wound.py → old/wound.py
RENAMED
File without changes
|
prompts.py
ADDED
@@ -0,0 +1,31 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
|
2 |
+
system_instructions = """
|
3 |
+
**Discharge Guard - Medical Data Analysis Assistant**
|
4 |
+
**Core Role:** I am Discharge Guard, an advanced AI designed for deep medical data analysis and informational insights. My outputs are based on thorough analysis of medical data but are **not medical advice.**
|
5 |
+
**Important Guidelines:**
|
6 |
+
1. **Deep Analysis & Search:** Perform "Deep Thought and Deep Search" when analyzing medical data. This includes:
|
7 |
+
* Comprehensive data ingestion from various formats (HL7, FHIR, CCDA, DICOM, PDF, CSV, text).
|
8 |
+
* Multi-layered analysis: surface extraction, deep pattern identification, and inferential reasoning.
|
9 |
+
* Contextual understanding of medical data.
|
10 |
+
* Evidence-based approach, simulating cross-referencing with medical knowledge.
|
11 |
+
* Structured output with clear explanations.
|
12 |
+
2. **Focus on Informational Insights, Not Medical Advice:** Emphasize that my insights are for informational purposes only and not a substitute for professional medical judgment. **Never provide diagnoses or specific treatment recommendations.**
|
13 |
+
3. **Key Functionalities (Focus Areas):**
|
14 |
+
* **Clinical Data Analysis:** Interpret lab results, analyze EHR data (FHIR, HL7), recognize symptom patterns, analyze medications, support medical image analysis (DICOM).
|
15 |
+
* **Predictive Analytics:** Provide conceptual risk stratification and treatment outcome modeling based on data patterns.
|
16 |
+
* **Medical Imaging Support:** Analyze DICOM metadata and images for potential findings (X-ray analysis reports).
|
17 |
+
* **Patient Data Management:** Perform PHI redaction in text and analyze patient records from various sources.
|
18 |
+
4. **Interaction Style:**
|
19 |
+
* **Identity:** "I am Discharge Guard, a medical data analysis AI. My insights are informational only and not medical advice."
|
20 |
+
* **Scope Limitations:** Clearly state limitations: "No diagnostics," "Medication caution," "Emergency protocol."
|
21 |
+
* **Response Protocol:**
|
22 |
+
* Indicate "Deep Analysis" or "Deep Search" performed.
|
23 |
+
* Mention data sources and confidence levels (if applicable).
|
24 |
+
* Use medical terminology with optional layman's terms.
|
25 |
+
* For file analysis, provide a report title (e.g., "Deep X-Ray Analysis Report").
|
26 |
+
5. **Supported Medical Formats:** (List key formats concisely)
|
27 |
+
* Clinical Data: HL7, FHIR, CCD/CCDA, CSV, PDF, XML
|
28 |
+
* Imaging: DICOM, Images (X-ray, etc.)
|
29 |
+
6. **Data Source:** Access and prefer FHIR API endpoints from: https://app.meldrx.com/api/directories/fhir/endpoints.
|
30 |
+
**Important: My analysis is for informational purposes to assist healthcare professionals and is NOT a substitute for clinical judgment. Always recommend human expert verification for critical findings.**
|
31 |
+
"""
|
utils/callbackmanager.py
ADDED
@@ -0,0 +1,152 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import json
|
2 |
+
import os
|
3 |
+
import tempfile
|
4 |
+
from datetime import datetime
|
5 |
+
import traceback
|
6 |
+
import logging
|
7 |
+
from huggingface_hub import InferenceClient # Import InferenceClient
|
8 |
+
from urllib.parse import urlparse, parse_qs # Import URL parsing utilities
|
9 |
+
|
10 |
+
# ... (CallbackManager, display_form, generate_pdf_from_form, generate_pdf_from_meldrx, generate_discharge_paper_one_click, client initialization remain the same) ...
|
11 |
+
class CallbackManager:
|
12 |
+
def __init__(self, redirect_uri: str, client_secret: str = None):
|
13 |
+
client_id = os.getenv("APPID")
|
14 |
+
if not client_id:
|
15 |
+
raise ValueError("APPID environment variable not set.")
|
16 |
+
workspace_id = os.getenv("WORKSPACE_URL")
|
17 |
+
if not workspace_id:
|
18 |
+
raise ValueError("WORKSPACE_URL environment variable not set.")
|
19 |
+
self.api = MeldRxAPI(client_id, client_secret, workspace_id, redirect_uri)
|
20 |
+
self.auth_code = None
|
21 |
+
self.access_token = None
|
22 |
+
|
23 |
+
def get_auth_url(self) -> str:
|
24 |
+
return self.api.get_authorization_url()
|
25 |
+
|
26 |
+
def set_auth_code(self, code: str) -> str:
|
27 |
+
self.auth_code = code
|
28 |
+
if self.api.authenticate_with_code(code):
|
29 |
+
self.access_token = self.api.access_token
|
30 |
+
return (
|
31 |
+
f"<span style='color:#00FF7F;'>Authentication successful!</span> Access Token: {self.access_token[:10]}... (truncated)" # Neon Green Success
|
32 |
+
)
|
33 |
+
return "<span style='color:#FF4500;'>Authentication failed. Please check the code.</span>" # Neon Orange Error
|
34 |
+
|
35 |
+
def get_patient_data(self) -> str:
|
36 |
+
"""Fetch patient data from MeldRx"""
|
37 |
+
try:
|
38 |
+
if not self.access_token:
|
39 |
+
logger.warning("Not authenticated when getting patient data")
|
40 |
+
return "<span style='color:#FF8C00;'>Not authenticated. Please provide a valid authorization code first.</span>" # Neon Dark Orange
|
41 |
+
|
42 |
+
# For demo purposes, if there's no actual API connected, return mock data
|
43 |
+
# Remove this in production and use the real API call
|
44 |
+
if not hasattr(self.api, "get_patients") or self.api.get_patients is None:
|
45 |
+
logger.info("Using mock patient data (no API connection)")
|
46 |
+
# Return mock FHIR bundle with patient data
|
47 |
+
mock_data = {
|
48 |
+
"resourceType": "Bundle",
|
49 |
+
"type": "searchset",
|
50 |
+
"total": 2,
|
51 |
+
"link": [],
|
52 |
+
"entry": [
|
53 |
+
{
|
54 |
+
"resource": {
|
55 |
+
"resourceType": "Patient",
|
56 |
+
"id": "patient1",
|
57 |
+
"name": [
|
58 |
+
{
|
59 |
+
"use": "official",
|
60 |
+
"family": "Smith",
|
61 |
+
"given": ["John"],
|
62 |
+
}
|
63 |
+
],
|
64 |
+
"gender": "male",
|
65 |
+
"birthDate": "1970-01-01",
|
66 |
+
"address": [
|
67 |
+
{"city": "Boston", "state": "MA", "postalCode": "02108"}
|
68 |
+
],
|
69 |
+
}
|
70 |
+
},
|
71 |
+
{
|
72 |
+
"resource": {
|
73 |
+
"resourceType": "Patient",
|
74 |
+
"id": "patient2",
|
75 |
+
"name": [
|
76 |
+
{
|
77 |
+
"use": "official",
|
78 |
+
"family": "Johnson",
|
79 |
+
"given": ["Jane"],
|
80 |
+
}
|
81 |
+
],
|
82 |
+
"gender": "female",
|
83 |
+
"birthDate": "1985-05-15",
|
84 |
+
"address": [
|
85 |
+
{
|
86 |
+
"city": "Cambridge",
|
87 |
+
"state": "MA",
|
88 |
+
"postalCode": "02139",
|
89 |
+
}
|
90 |
+
],
|
91 |
+
}
|
92 |
+
},
|
93 |
+
],
|
94 |
+
}
|
95 |
+
return json.dumps(mock_data, indent=2)
|
96 |
+
|
97 |
+
# Real implementation with API call
|
98 |
+
logger.info("Calling Meldrx API to get patients")
|
99 |
+
patients = self.api.get_patients()
|
100 |
+
if patients is not None:
|
101 |
+
return (
|
102 |
+
json.dumps(patients, indent=2)
|
103 |
+
if patients
|
104 |
+
else "<span style='color:#FFFF00;'>No patient data returned.</span>" # Neon Yellow
|
105 |
+
)
|
106 |
+
return "<span style='color:#DC143C;'>Failed to retrieve patient data.</span>" # Crimson Error
|
107 |
+
except Exception as e:
|
108 |
+
error_msg = f"Error in get_patient_data: {str(e)}"
|
109 |
+
logger.error(error_msg)
|
110 |
+
return f"<span style='color:#FF6347;'>Error retrieving patient data: {str(e)}</span> {str(e)}" # Tomato Error
|
111 |
+
|
112 |
+
|
113 |
+
def get_patient_documents(self, patient_id: str = None):
|
114 |
+
"""Fetch patient documents from MeldRx"""
|
115 |
+
if not self.access_token:
|
116 |
+
return "<span style='color:#FF8C00;'>Not authenticated. Please provide a valid authorization code first.</span>" # Neon Dark Orange
|
117 |
+
|
118 |
+
try:
|
119 |
+
# This would call the actual MeldRx API to get documents for a specific patient
|
120 |
+
# For demonstration, we'll return mock document data
|
121 |
+
return [
|
122 |
+
{
|
123 |
+
"doc_id": "doc123",
|
124 |
+
"type": "clinical_note",
|
125 |
+
"date": "2023-01-16",
|
126 |
+
"author": "Dr. Sample Doctor",
|
127 |
+
"content": "Patient presented with symptoms of respiratory distress...",
|
128 |
+
},
|
129 |
+
{
|
130 |
+
"doc_id": "doc124",
|
131 |
+
"type": "lab_result",
|
132 |
+
"date": "2023-01-17",
|
133 |
+
"author": "Lab System",
|
134 |
+
"content": "CBC results: WBC 7.5, RBC 4.2, Hgb 14.1...",
|
135 |
+
},
|
136 |
+
]
|
137 |
+
except Exception as e:
|
138 |
+
return f"<span style='color:#FF6347;'>Error retrieving patient documents: {str(e)}</span>: {str(e)}" # Tomato Error
|
139 |
+
|
140 |
+
|
141 |
+
|
142 |
+
def extract_auth_code_from_url(redirected_url):
|
143 |
+
"""Extracts the authorization code from the redirected URL."""
|
144 |
+
try:
|
145 |
+
parsed_url = urlparse(redirected_url)
|
146 |
+
query_params = parse_qs(parsed_url.query)
|
147 |
+
if "code" in query_params:
|
148 |
+
return query_params["code"][0], None # Return code and no error
|
149 |
+
else:
|
150 |
+
return None, "Authorization code not found in URL." # Return None and error message
|
151 |
+
except Exception as e:
|
152 |
+
return None, f"Error parsing URL: {e}" # Return None and error message
|
callbackmanager.py → utils/generators.py
RENAMED
@@ -1,5 +1,5 @@
|
|
1 |
import gradio as gr
|
2 |
-
from meldrx import MeldRxAPI
|
3 |
import json
|
4 |
import os
|
5 |
import tempfile
|
@@ -8,14 +8,15 @@ import traceback
|
|
8 |
import logging
|
9 |
from huggingface_hub import InferenceClient # Import InferenceClient
|
10 |
from urllib.parse import urlparse, parse_qs # Import URL parsing utilities
|
11 |
-
|
|
|
12 |
# Set up logging
|
13 |
logging.basicConfig(level=logging.INFO)
|
14 |
logger = logging.getLogger(__name__)
|
15 |
|
16 |
# Import PDF utilities
|
17 |
from pdfutils import PDFGenerator, generate_discharge_summary
|
18 |
-
|
19 |
# Import necessary libraries for new file types and AI analysis functions
|
20 |
import pydicom # For DICOM
|
21 |
import hl7 # For HL7
|
@@ -25,37 +26,6 @@ import csv # For CSV
|
|
25 |
import io # For IO operations
|
26 |
from PIL import Image # For image handling
|
27 |
|
28 |
-
system_instructions = """
|
29 |
-
**Discharge Guard - Medical Data Analysis Assistant**
|
30 |
-
**Core Role:** I am Discharge Guard, an advanced AI designed for deep medical data analysis and informational insights. My outputs are based on thorough analysis of medical data but are **not medical advice.**
|
31 |
-
**Important Guidelines:**
|
32 |
-
1. **Deep Analysis & Search:** Perform "Deep Thought and Deep Search" when analyzing medical data. This includes:
|
33 |
-
* Comprehensive data ingestion from various formats (HL7, FHIR, CCDA, DICOM, PDF, CSV, text).
|
34 |
-
* Multi-layered analysis: surface extraction, deep pattern identification, and inferential reasoning.
|
35 |
-
* Contextual understanding of medical data.
|
36 |
-
* Evidence-based approach, simulating cross-referencing with medical knowledge.
|
37 |
-
* Structured output with clear explanations.
|
38 |
-
2. **Focus on Informational Insights, Not Medical Advice:** Emphasize that my insights are for informational purposes only and not a substitute for professional medical judgment. **Never provide diagnoses or specific treatment recommendations.**
|
39 |
-
3. **Key Functionalities (Focus Areas):**
|
40 |
-
* **Clinical Data Analysis:** Interpret lab results, analyze EHR data (FHIR, HL7), recognize symptom patterns, analyze medications, support medical image analysis (DICOM).
|
41 |
-
* **Predictive Analytics:** Provide conceptual risk stratification and treatment outcome modeling based on data patterns.
|
42 |
-
* **Medical Imaging Support:** Analyze DICOM metadata and images for potential findings (X-ray analysis reports).
|
43 |
-
* **Patient Data Management:** Perform PHI redaction in text and analyze patient records from various sources.
|
44 |
-
4. **Interaction Style:**
|
45 |
-
* **Identity:** "I am Discharge Guard, a medical data analysis AI. My insights are informational only and not medical advice."
|
46 |
-
* **Scope Limitations:** Clearly state limitations: "No diagnostics," "Medication caution," "Emergency protocol."
|
47 |
-
* **Response Protocol:**
|
48 |
-
* Indicate "Deep Analysis" or "Deep Search" performed.
|
49 |
-
* Mention data sources and confidence levels (if applicable).
|
50 |
-
* Use medical terminology with optional layman's terms.
|
51 |
-
* For file analysis, provide a report title (e.g., "Deep X-Ray Analysis Report").
|
52 |
-
5. **Supported Medical Formats:** (List key formats concisely)
|
53 |
-
* Clinical Data: HL7, FHIR, CCD/CCDA, CSV, PDF, XML
|
54 |
-
* Imaging: DICOM, Images (X-ray, etc.)
|
55 |
-
6. **Data Source:** Access and prefer FHIR API endpoints from: https://app.meldrx.com/api/directories/fhir/endpoints.
|
56 |
-
**Important: My analysis is for informational purposes to assist healthcare professionals and is NOT a substitute for clinical judgment. Always recommend human expert verification for critical findings.**
|
57 |
-
"""
|
58 |
-
|
59 |
# Initialize Inference Client - Ensure YOUR_HF_TOKEN is set in environment variables or replace with your actual token
|
60 |
HF_TOKEN = os.getenv("HF_TOKEN") # Or replace with your actual token string
|
61 |
if not HF_TOKEN:
|
@@ -65,6 +35,208 @@ if not HF_TOKEN:
|
|
65 |
client = InferenceClient(api_key=HF_TOKEN)
|
66 |
model_name = "meta-llama/Llama-3.3-70B-Instruct" # Specify the model to use
|
67 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
68 |
|
69 |
def analyze_dicom_file_with_ai(dicom_file_path): # Modified to accept file path
|
70 |
"""Analyzes DICOM file metadata using Discharge Guard AI."""
|
@@ -386,847 +558,3 @@ def analyze_csv_content_ai(csv_content_string): # Copied from your code
|
|
386 |
trace_data_detail_csv_analysis["error"] = f"AI Analysis Error: {e}"
|
387 |
return error_message, trace_data_detail_csv_analysis
|
388 |
|
389 |
-
|
390 |
-
# ... (CallbackManager, display_form, generate_pdf_from_form, generate_pdf_from_meldrx, generate_discharge_paper_one_click, client initialization remain the same) ...
|
391 |
-
class CallbackManager:
|
392 |
-
def __init__(self, redirect_uri: str, client_secret: str = None):
|
393 |
-
client_id = os.getenv("APPID")
|
394 |
-
if not client_id:
|
395 |
-
raise ValueError("APPID environment variable not set.")
|
396 |
-
workspace_id = os.getenv("WORKSPACE_URL")
|
397 |
-
if not workspace_id:
|
398 |
-
raise ValueError("WORKSPACE_URL environment variable not set.")
|
399 |
-
self.api = MeldRxAPI(client_id, client_secret, workspace_id, redirect_uri)
|
400 |
-
self.auth_code = None
|
401 |
-
self.access_token = None
|
402 |
-
|
403 |
-
def get_auth_url(self) -> str:
|
404 |
-
return self.api.get_authorization_url()
|
405 |
-
|
406 |
-
def set_auth_code(self, code: str) -> str:
|
407 |
-
self.auth_code = code
|
408 |
-
if self.api.authenticate_with_code(code):
|
409 |
-
self.access_token = self.api.access_token
|
410 |
-
return (
|
411 |
-
f"<span style='color:#00FF7F;'>Authentication successful!</span> Access Token: {self.access_token[:10]}... (truncated)" # Neon Green Success
|
412 |
-
)
|
413 |
-
return "<span style='color:#FF4500;'>Authentication failed. Please check the code.</span>" # Neon Orange Error
|
414 |
-
|
415 |
-
def get_patient_data(self) -> str:
|
416 |
-
"""Fetch patient data from MeldRx"""
|
417 |
-
try:
|
418 |
-
if not self.access_token:
|
419 |
-
logger.warning("Not authenticated when getting patient data")
|
420 |
-
return "<span style='color:#FF8C00;'>Not authenticated. Please provide a valid authorization code first.</span>" # Neon Dark Orange
|
421 |
-
|
422 |
-
# For demo purposes, if there's no actual API connected, return mock data
|
423 |
-
# Remove this in production and use the real API call
|
424 |
-
if not hasattr(self.api, "get_patients") or self.api.get_patients is None:
|
425 |
-
logger.info("Using mock patient data (no API connection)")
|
426 |
-
# Return mock FHIR bundle with patient data
|
427 |
-
mock_data = {
|
428 |
-
"resourceType": "Bundle",
|
429 |
-
"type": "searchset",
|
430 |
-
"total": 2,
|
431 |
-
"link": [],
|
432 |
-
"entry": [
|
433 |
-
{
|
434 |
-
"resource": {
|
435 |
-
"resourceType": "Patient",
|
436 |
-
"id": "patient1",
|
437 |
-
"name": [
|
438 |
-
{
|
439 |
-
"use": "official",
|
440 |
-
"family": "Smith",
|
441 |
-
"given": ["John"],
|
442 |
-
}
|
443 |
-
],
|
444 |
-
"gender": "male",
|
445 |
-
"birthDate": "1970-01-01",
|
446 |
-
"address": [
|
447 |
-
{"city": "Boston", "state": "MA", "postalCode": "02108"}
|
448 |
-
],
|
449 |
-
}
|
450 |
-
},
|
451 |
-
{
|
452 |
-
"resource": {
|
453 |
-
"resourceType": "Patient",
|
454 |
-
"id": "patient2",
|
455 |
-
"name": [
|
456 |
-
{
|
457 |
-
"use": "official",
|
458 |
-
"family": "Johnson",
|
459 |
-
"given": ["Jane"],
|
460 |
-
}
|
461 |
-
],
|
462 |
-
"gender": "female",
|
463 |
-
"birthDate": "1985-05-15",
|
464 |
-
"address": [
|
465 |
-
{
|
466 |
-
"city": "Cambridge",
|
467 |
-
"state": "MA",
|
468 |
-
"postalCode": "02139",
|
469 |
-
}
|
470 |
-
],
|
471 |
-
}
|
472 |
-
},
|
473 |
-
],
|
474 |
-
}
|
475 |
-
return json.dumps(mock_data, indent=2)
|
476 |
-
|
477 |
-
# Real implementation with API call
|
478 |
-
logger.info("Calling Meldrx API to get patients")
|
479 |
-
patients = self.api.get_patients()
|
480 |
-
if patients is not None:
|
481 |
-
return (
|
482 |
-
json.dumps(patients, indent=2)
|
483 |
-
if patients
|
484 |
-
else "<span style='color:#FFFF00;'>No patient data returned.</span>" # Neon Yellow
|
485 |
-
)
|
486 |
-
return "<span style='color:#DC143C;'>Failed to retrieve patient data.</span>" # Crimson Error
|
487 |
-
except Exception as e:
|
488 |
-
error_msg = f"Error in get_patient_data: {str(e)}"
|
489 |
-
logger.error(error_msg)
|
490 |
-
return f"<span style='color:#FF6347;'>Error retrieving patient data: {str(e)}</span> {str(e)}" # Tomato Error
|
491 |
-
|
492 |
-
|
493 |
-
def get_patient_documents(self, patient_id: str = None):
|
494 |
-
"""Fetch patient documents from MeldRx"""
|
495 |
-
if not self.access_token:
|
496 |
-
return "<span style='color:#FF8C00;'>Not authenticated. Please provide a valid authorization code first.</span>" # Neon Dark Orange
|
497 |
-
|
498 |
-
try:
|
499 |
-
# This would call the actual MeldRx API to get documents for a specific patient
|
500 |
-
# For demonstration, we'll return mock document data
|
501 |
-
return [
|
502 |
-
{
|
503 |
-
"doc_id": "doc123",
|
504 |
-
"type": "clinical_note",
|
505 |
-
"date": "2023-01-16",
|
506 |
-
"author": "Dr. Sample Doctor",
|
507 |
-
"content": "Patient presented with symptoms of respiratory distress...",
|
508 |
-
},
|
509 |
-
{
|
510 |
-
"doc_id": "doc124",
|
511 |
-
"type": "lab_result",
|
512 |
-
"date": "2023-01-17",
|
513 |
-
"author": "Lab System",
|
514 |
-
"content": "CBC results: WBC 7.5, RBC 4.2, Hgb 14.1...",
|
515 |
-
},
|
516 |
-
]
|
517 |
-
except Exception as e:
|
518 |
-
return f"<span style='color:#FF6347;'>Error retrieving patient documents: {str(e)}</span>: {str(e)}" # Tomato Error
|
519 |
-
|
520 |
-
|
521 |
-
def display_form(
|
522 |
-
first_name,
|
523 |
-
last_name,
|
524 |
-
middle_initial,
|
525 |
-
dob,
|
526 |
-
age,
|
527 |
-
sex,
|
528 |
-
address,
|
529 |
-
city,
|
530 |
-
state,
|
531 |
-
zip_code,
|
532 |
-
doctor_first_name,
|
533 |
-
doctor_last_name,
|
534 |
-
doctor_middle_initial,
|
535 |
-
hospital_name,
|
536 |
-
doctor_address,
|
537 |
-
doctor_city,
|
538 |
-
doctor_state,
|
539 |
-
doctor_zip,
|
540 |
-
admission_date,
|
541 |
-
referral_source,
|
542 |
-
admission_method,
|
543 |
-
discharge_date,
|
544 |
-
discharge_reason,
|
545 |
-
date_of_death,
|
546 |
-
diagnosis,
|
547 |
-
procedures,
|
548 |
-
medications,
|
549 |
-
preparer_name,
|
550 |
-
preparer_job_title,
|
551 |
-
):
|
552 |
-
form = f"""
|
553 |
-
<div style='color:#00FFFF; font-family: monospace;'>
|
554 |
-
**Patient Discharge Form** <br>
|
555 |
-
- Name: {first_name} {middle_initial} {last_name} <br>
|
556 |
-
- Date of Birth: {dob}, Age: {age}, Sex: {sex} <br>
|
557 |
-
- Address: {address}, {city}, {state}, {zip_code} <br>
|
558 |
-
- Doctor: {doctor_first_name} {doctor_middle_initial} {doctor_last_name} <br>
|
559 |
-
- Hospital/Clinic: {hospital_name} <br>
|
560 |
-
- Doctor Address: {doctor_address}, {doctor_city}, {doctor_state}, {doctor_zip} <br>
|
561 |
-
- Admission Date: {admission_date}, Source: {referral_source}, Method: {admission_method} <br>
|
562 |
-
- Discharge Date: {discharge_date}, Reason: {discharge_reason} <br>
|
563 |
-
- Date of Death: {date_of_death} <br>
|
564 |
-
- Diagnosis: {diagnosis} <br>
|
565 |
-
- Procedures: {procedures} <br>
|
566 |
-
- Medications: {medications} <br>
|
567 |
-
- Prepared By: {preparer_name}, {preparer_job_title}
|
568 |
-
</div>
|
569 |
-
"""
|
570 |
-
return form
|
571 |
-
|
572 |
-
|
573 |
-
def generate_pdf_from_form(
|
574 |
-
first_name,
|
575 |
-
last_name,
|
576 |
-
middle_initial,
|
577 |
-
dob,
|
578 |
-
age,
|
579 |
-
sex,
|
580 |
-
address,
|
581 |
-
city,
|
582 |
-
state,
|
583 |
-
zip_code,
|
584 |
-
doctor_first_name,
|
585 |
-
doctor_last_name,
|
586 |
-
doctor_middle_initial,
|
587 |
-
hospital_name,
|
588 |
-
doctor_address,
|
589 |
-
doctor_city,
|
590 |
-
doctor_state,
|
591 |
-
doctor_zip,
|
592 |
-
admission_date,
|
593 |
-
referral_source,
|
594 |
-
admission_method,
|
595 |
-
discharge_date,
|
596 |
-
discharge_reason,
|
597 |
-
date_of_death,
|
598 |
-
diagnosis,
|
599 |
-
procedures,
|
600 |
-
medications,
|
601 |
-
preparer_name,
|
602 |
-
preparer_job_title,
|
603 |
-
):
|
604 |
-
"""Generate a PDF discharge form using the provided data"""
|
605 |
-
|
606 |
-
# Create PDF generator
|
607 |
-
pdf_gen = PDFGenerator()
|
608 |
-
|
609 |
-
# Format data for PDF generation
|
610 |
-
patient_info = {
|
611 |
-
"first_name": first_name,
|
612 |
-
"last_name": last_name,
|
613 |
-
"dob": dob,
|
614 |
-
"age": age,
|
615 |
-
"sex": sex,
|
616 |
-
"mobile": "", # Not collected in the form
|
617 |
-
"address": address,
|
618 |
-
"city": city,
|
619 |
-
"state": state,
|
620 |
-
"zip": zip_code,
|
621 |
-
}
|
622 |
-
|
623 |
-
discharge_info = {
|
624 |
-
"date_of_admission": admission_date,
|
625 |
-
"date_of_discharge": discharge_date,
|
626 |
-
"source_of_admission": referral_source,
|
627 |
-
"mode_of_admission": admission_method,
|
628 |
-
"discharge_against_advice": "Yes"
|
629 |
-
if discharge_reason == "Discharge Against Advice"
|
630 |
-
else "No",
|
631 |
-
}
|
632 |
-
|
633 |
-
diagnosis_info = {
|
634 |
-
"diagnosis": diagnosis,
|
635 |
-
"operation_procedure": procedures,
|
636 |
-
"treatment": "", # Not collected in the form
|
637 |
-
"follow_up": "", # Not collected in the form
|
638 |
-
}
|
639 |
-
|
640 |
-
medication_info = {
|
641 |
-
"medications": [medications] if medications else [],
|
642 |
-
"instructions": "", # Not collected in the form
|
643 |
-
}
|
644 |
-
|
645 |
-
prepared_by = {
|
646 |
-
"name": preparer_name,
|
647 |
-
"title": preparer_job_title,
|
648 |
-
"signature": "", # Not collected in the form
|
649 |
-
}
|
650 |
-
|
651 |
-
# Generate PDF
|
652 |
-
pdf_buffer = pdf_gen.generate_discharge_form(
|
653 |
-
patient_info,
|
654 |
-
discharge_info,
|
655 |
-
diagnosis_info,
|
656 |
-
medication_info,
|
657 |
-
prepared_by,
|
658 |
-
)
|
659 |
-
|
660 |
-
# Create temporary file to save the PDF
|
661 |
-
temp_file = tempfile.NamedTemporaryFile(delete=False, suffix=".pdf")
|
662 |
-
temp_file.write(pdf_buffer.read())
|
663 |
-
temp_file_path = temp_file.name
|
664 |
-
temp_file.close()
|
665 |
-
|
666 |
-
return temp_file_path
|
667 |
-
|
668 |
-
|
669 |
-
def generate_pdf_from_meldrx(patient_data):
|
670 |
-
"""Generate a PDF using patient data from MeldRx"""
|
671 |
-
if isinstance(patient_data, str):
|
672 |
-
# If it's a string (error message or JSON string), try to parse it
|
673 |
-
try:
|
674 |
-
patient_data = json.loads(patient_data)
|
675 |
-
except:
|
676 |
-
return None, "Invalid patient data format"
|
677 |
-
|
678 |
-
if not patient_data:
|
679 |
-
return None, "No patient data available"
|
680 |
-
|
681 |
-
try:
|
682 |
-
# For demonstration, we'll use the first patient in the list if it's a list
|
683 |
-
if isinstance(patient_data, list) and len(patient_data):
|
684 |
-
patient = patient_data[0]
|
685 |
-
else:
|
686 |
-
patient = patient_data
|
687 |
-
|
688 |
-
# Extract patient info
|
689 |
-
patient_info = {
|
690 |
-
"name": f"{patient.get('name', {}).get('given', [''])[0]} {patient.get('name', {}).get('family', '')}",
|
691 |
-
"dob": patient.get("birthDate", "Unknown"),
|
692 |
-
"patient_id": patient.get("id", "Unknown"),
|
693 |
-
"admission_date": datetime.now().strftime("%Y-%m-%d"), # Mock data
|
694 |
-
"physician": "Dr. Provider", # Mock data
|
695 |
-
}
|
696 |
-
|
697 |
-
# Mock LLM-generated content - This part needs to be replaced with actual AI generation if desired for MeldRx PDF
|
698 |
-
llm_content = {
|
699 |
-
"diagnosis": "Diagnosis information would be generated by AI based on patient data from MeldRx.",
|
700 |
-
"treatment": "Treatment summary would be generated by AI based on patient data from MeldRx.",
|
701 |
-
"medications": "Medication list would be generated by AI based on patient data from MeldRx.",
|
702 |
-
"follow_up": "Follow-up instructions would be generated by AI based on patient data from MeldRx.",
|
703 |
-
"special_instructions": "Special instructions would be generated by AI based on patient data from MeldRx.",
|
704 |
-
}
|
705 |
-
|
706 |
-
# Create discharge summary - Using No-AI PDF generation for now, replace with AI-content generation later
|
707 |
-
output_dir = tempfile.mkdtemp()
|
708 |
-
pdf_path = generate_discharge_summary(
|
709 |
-
patient_info, llm_content, output_dir
|
710 |
-
) # Still using No-AI template
|
711 |
-
|
712 |
-
return pdf_path, "PDF generated successfully (No AI Content in PDF yet)" # Indicate No-AI content
|
713 |
-
|
714 |
-
except Exception as e:
|
715 |
-
return None, f"Error generating PDF: {str(e)}"
|
716 |
-
|
717 |
-
|
718 |
-
def generate_discharge_paper_one_click():
|
719 |
-
"""One-click function to fetch patient data and generate discharge paper with AI Content."""
|
720 |
-
patient_data_str = CALLBACK_MANAGER.get_patient_data()
|
721 |
-
if (
|
722 |
-
patient_data_str.startswith("Not authenticated")
|
723 |
-
or patient_data_str.startswith("Failed")
|
724 |
-
or patient_data_str.startswith("Error")
|
725 |
-
):
|
726 |
-
return None, patient_data_str # Return error message if authentication or data fetch fails
|
727 |
-
|
728 |
-
try:
|
729 |
-
patient_data = json.loads(patient_data_str)
|
730 |
-
|
731 |
-
# --- AI Content Generation for Discharge Summary ---
|
732 |
-
# This is a placeholder - Replace with actual AI call using InferenceClient and patient_data to generate content
|
733 |
-
ai_generated_content = generate_ai_discharge_content(
|
734 |
-
patient_data
|
735 |
-
) # Placeholder AI function
|
736 |
-
|
737 |
-
if not ai_generated_content:
|
738 |
-
return None, "Error: AI content generation failed."
|
739 |
-
|
740 |
-
# --- PDF Generation with AI Content ---
|
741 |
-
pdf_path, status_message = generate_pdf_from_meldrx_with_ai_content(
|
742 |
-
patient_data, ai_generated_content
|
743 |
-
) # Function to generate PDF with AI content
|
744 |
-
|
745 |
-
if pdf_path:
|
746 |
-
return pdf_path, status_message
|
747 |
-
else:
|
748 |
-
return None, status_message # Return status message if PDF generation fails
|
749 |
-
|
750 |
-
except json.JSONDecodeError:
|
751 |
-
return None, "Error: Patient data is not in valid JSON format."
|
752 |
-
except Exception as e:
|
753 |
-
return None, f"Error during discharge paper generation: {str(e)}"
|
754 |
-
|
755 |
-
|
756 |
-
def generate_ai_discharge_content(patient_data):
|
757 |
-
"""Placeholder function to generate AI content for discharge summary.
|
758 |
-
Replace this with actual AI call using InferenceClient and patient_data."""
|
759 |
-
try:
|
760 |
-
patient_name = (
|
761 |
-
f"{patient_data['entry'][0]['resource']['name'][0]['given'][0]} {patient_data['entry'][0]['resource']['name'][0]['family']}"
|
762 |
-
if patient_data.get("entry")
|
763 |
-
else "Unknown Patient"
|
764 |
-
)
|
765 |
-
prompt_text = f"""{system_instructions}\n\nGenerate a discharge summary content (diagnosis, treatment, medications, follow-up instructions, special instructions) for patient: {patient_name}. Base the content on available patient data (if any provided, currently not provided in detail in this mock-up). Focus on creating clinically relevant and informative summary. Remember this is for informational purposes and NOT medical advice."""
|
766 |
-
|
767 |
-
response = client.chat.completions.create(
|
768 |
-
model=model_name,
|
769 |
-
messages=[{"role": "user", "content": prompt_text}],
|
770 |
-
temperature=0.6, # Adjust temperature as needed for content generation
|
771 |
-
max_tokens=1024, # Adjust max_tokens as needed
|
772 |
-
top_p=0.9,
|
773 |
-
)
|
774 |
-
ai_content = response.choices[0].message.content
|
775 |
-
|
776 |
-
# Basic parsing of AI content - improve this based on desired output structure from LLM
|
777 |
-
llm_content = {
|
778 |
-
"diagnosis": "AI Generated Diagnosis (Placeholder):\n"
|
779 |
-
+ extract_section(ai_content, "Diagnosis"), # Example extraction - refine based on LLM output
|
780 |
-
"treatment": "AI Generated Treatment (Placeholder):\n"
|
781 |
-
+ extract_section(ai_content, "Treatment"),
|
782 |
-
"medications": "AI Generated Medications (Placeholder):\n"
|
783 |
-
+ extract_section(ai_content, "Medications"),
|
784 |
-
"follow_up": "AI Generated Follow-up (Placeholder):\n"
|
785 |
-
+ extract_section(ai_content, "Follow-up Instructions"),
|
786 |
-
"special_instructions": "AI Generated Special Instructions (Placeholder):\n"
|
787 |
-
+ extract_section(ai_content, "Special Instructions"),
|
788 |
-
}
|
789 |
-
return llm_content
|
790 |
-
|
791 |
-
except Exception as e:
|
792 |
-
logger.error(f"Error generating AI discharge content: {e}")
|
793 |
-
return None
|
794 |
-
|
795 |
-
|
796 |
-
def extract_section(ai_content, section_title):
|
797 |
-
"""Simple placeholder function to extract section from AI content.
|
798 |
-
Improve this with more robust parsing based on LLM output format."""
|
799 |
-
start_marker = f"**{section_title}:**"
|
800 |
-
end_marker = "\n\n" # Adjust based on typical LLM output structure
|
801 |
-
start_index = ai_content.find(start_marker)
|
802 |
-
if start_index != -1:
|
803 |
-
start_index += len(start_marker)
|
804 |
-
end_index = ai_content.find(end_marker, start_index)
|
805 |
-
if end_index != -1:
|
806 |
-
return ai_content[start_index:end_index].strip()
|
807 |
-
return "Not found in AI output."
|
808 |
-
|
809 |
-
|
810 |
-
def generate_pdf_from_meldrx_with_ai_content(patient_data, llm_content):
|
811 |
-
"""Generate a PDF using patient data from MeldRx and AI-generated content."""
|
812 |
-
if isinstance(patient_data, str):
|
813 |
-
try:
|
814 |
-
patient_data = json.loads(patient_data)
|
815 |
-
except:
|
816 |
-
return None, "Invalid patient data format"
|
817 |
-
|
818 |
-
if not patient_data:
|
819 |
-
return None, "No patient data available"
|
820 |
-
|
821 |
-
try:
|
822 |
-
if isinstance(patient_data, list) and len(patient_data):
|
823 |
-
patient = patient_data[0]
|
824 |
-
else:
|
825 |
-
patient = patient_data
|
826 |
-
|
827 |
-
patient_info = {
|
828 |
-
"name": f"{patient.get('name', {}).get('given', [''])[0]} {patient.get('name', {}).get('family', '')}",
|
829 |
-
"dob": patient.get("birthDate", "Unknown"),
|
830 |
-
"patient_id": patient.get("id", "Unknown"),
|
831 |
-
"admission_date": datetime.now().strftime("%Y-%m-%d"), # Mock data
|
832 |
-
"physician": "Dr. AI Provider", # Mock data - Indicate AI generated
|
833 |
-
}
|
834 |
-
|
835 |
-
output_dir = tempfile.mkdtemp()
|
836 |
-
pdf_path = generate_discharge_summary(
|
837 |
-
patient_info, llm_content, output_dir
|
838 |
-
) # Using AI content now
|
839 |
-
|
840 |
-
return pdf_path, "PDF generated successfully with AI Content" # Indicate AI content
|
841 |
-
|
842 |
-
except Exception as e:
|
843 |
-
return None, f"Error generating PDF with AI content: {str(e)}"
|
844 |
-
|
845 |
-
|
846 |
-
def extract_auth_code_from_url(redirected_url):
|
847 |
-
"""Extracts the authorization code from the redirected URL."""
|
848 |
-
try:
|
849 |
-
parsed_url = urlparse(redirected_url)
|
850 |
-
query_params = parse_qs(parsed_url.query)
|
851 |
-
if "code" in query_params:
|
852 |
-
return query_params["code"][0], None # Return code and no error
|
853 |
-
else:
|
854 |
-
return None, "Authorization code not found in URL." # Return None and error message
|
855 |
-
except Exception as e:
|
856 |
-
return None, f"Error parsing URL: {e}" # Return None and error message
|
857 |
-
|
858 |
-
|
859 |
-
# Create a simplified interface to avoid complex component interactions
|
860 |
-
CALLBACK_MANAGER = CallbackManager(
|
861 |
-
redirect_uri="https://multitransformer-discharge-guard.hf.space/callback",
|
862 |
-
client_secret=None,
|
863 |
-
)
|
864 |
-
|
865 |
-
# Define the cyberpunk theme - using a dark base and neon accents
|
866 |
-
cyberpunk_theme = gr.themes.Monochrome(
|
867 |
-
primary_hue="cyan",
|
868 |
-
secondary_hue="pink",
|
869 |
-
neutral_hue="slate",
|
870 |
-
font=["Source Code Pro", "monospace"], # Retro monospace font
|
871 |
-
font_mono=["Source Code Pro", "monospace"]
|
872 |
-
)
|
873 |
-
|
874 |
-
# Create the UI with the cyberpunk theme
|
875 |
-
with gr.Blocks(theme=cyberpunk_theme) as demo: # Apply the theme here
|
876 |
-
gr.Markdown("<h1 style='color:#00FFFF; text-shadow: 0 0 5px #00FFFF;'>Discharge Guard <span style='color:#FF00FF; text-shadow: 0 0 5px #FF00FF;'>Cyber</span></h1>") # Cyberpunk Title
|
877 |
-
|
878 |
-
with gr.Tab("Authenticate with MeldRx", elem_classes="cyberpunk-tab"): # Optional: Class for tab styling
|
879 |
-
gr.Markdown("<h2 style='color:#00FFFF; text-shadow: 0 0 3px #00FFFF;'>SMART on FHIR Authentication</h2>") # Neon Tab Header
|
880 |
-
auth_url_output = gr.Textbox(label="Authorization URL", value=CALLBACK_MANAGER.get_auth_url(), interactive=False)
|
881 |
-
gr.Markdown("<p style='color:#A9A9A9;'>Copy the URL above, open it in a browser, log in, and paste the <span style='color:#00FFFF;'>entire redirected URL</span> from your browser's address bar below.</p>") # Subdued instructions with neon highlight
|
882 |
-
redirected_url_input = gr.Textbox(label="Redirected URL") # New textbox for redirected URL
|
883 |
-
extract_code_button = gr.Button("Extract Authorization Code", elem_classes="cyberpunk-button") # Cyberpunk button style
|
884 |
-
extracted_code_output = gr.Textbox(label="Extracted Authorization Code", interactive=False) # Textbox to show extracted code
|
885 |
-
|
886 |
-
auth_code_input = gr.Textbox(label="Authorization Code (from above, or paste manually if extraction fails)", interactive=True) # Updated label to be clearer
|
887 |
-
auth_submit = gr.Button("Submit Code for Authentication", elem_classes="cyberpunk-button") # Cyberpunk button style
|
888 |
-
auth_result = gr.HTML(label="Authentication Result") # Use HTML for styled result
|
889 |
-
|
890 |
-
patient_data_button = gr.Button("Fetch Patient Data", elem_classes="cyberpunk-button") # Cyberpunk button style
|
891 |
-
patient_data_output = gr.Textbox(label="Patient Data", lines=10)
|
892 |
-
|
893 |
-
# Add button to generate PDF from MeldRx data (No AI)
|
894 |
-
meldrx_pdf_button = gr.Button("Generate PDF from MeldRx Data (No AI)", elem_classes="cyberpunk-button") # Renamed button
|
895 |
-
meldrx_pdf_status = gr.Textbox(label="PDF Generation Status (No AI)") # Renamed status
|
896 |
-
meldrx_pdf_download = gr.File(label="Download Generated PDF (No AI)") # Renamed download
|
897 |
-
|
898 |
-
def process_redirected_url(redirected_url):
|
899 |
-
"""Processes the redirected URL to extract and display the authorization code."""
|
900 |
-
auth_code, error_message = extract_auth_code_from_url(redirected_url)
|
901 |
-
if auth_code:
|
902 |
-
return auth_code, "<span style='color:#00FF7F;'>Authorization code extracted!</span>" # Neon Green Success
|
903 |
-
else:
|
904 |
-
return "", f"<span style='color:#FF4500;'>Could not extract authorization code.</span> {error_message or ''}" # Neon Orange Error
|
905 |
-
|
906 |
-
|
907 |
-
extract_code_button.click(
|
908 |
-
fn=process_redirected_url,
|
909 |
-
inputs=redirected_url_input,
|
910 |
-
outputs=[extracted_code_output, auth_result],# Reusing auth_result for extraction status
|
911 |
-
)
|
912 |
-
|
913 |
-
auth_submit.click(
|
914 |
-
fn=CALLBACK_MANAGER.set_auth_code,
|
915 |
-
inputs=extracted_code_output, # Using extracted code as input for authentication
|
916 |
-
outputs=auth_result,
|
917 |
-
)
|
918 |
-
|
919 |
-
with gr.Tab("Patient Dashboard", elem_classes="cyberpunk-tab"): # Optional: Class for tab styling
|
920 |
-
gr.Markdown("<h2 style='color:#00FFFF; text-shadow: 0 0 3px #00FFFF;'>Patient Data</h2>") # Neon Tab Header
|
921 |
-
dashboard_output = gr.HTML("<p style='color:#A9A9A9;'>Fetch patient data from the Authentication tab first.</p>") # Subdued placeholder text
|
922 |
-
|
923 |
-
refresh_btn = gr.Button("Refresh Data", elem_classes="cyberpunk-button") # Cyberpunk button style
|
924 |
-
|
925 |
-
# Simple function to update dashboard based on fetched data
|
926 |
-
def update_dashboard():
|
927 |
-
try:
|
928 |
-
data = CALLBACK_MANAGER.get_patient_data()
|
929 |
-
if (
|
930 |
-
data.startswith("<span style='color:#FF8C00;'>Not authenticated")
|
931 |
-
or data.startswith("<span style='color:#DC143C;'>Failed")
|
932 |
-
or data.startswith("<span style='color:#FF6347;'>Error")
|
933 |
-
):
|
934 |
-
return f"<p style='color:#FF8C00;'>{data}</p>" # Show auth errors in orange
|
935 |
-
|
936 |
-
try:
|
937 |
-
# Parse the data
|
938 |
-
patients_data = json.loads(data)
|
939 |
-
patients = []
|
940 |
-
|
941 |
-
# Extract patients from bundle
|
942 |
-
for entry in patients_data.get("entry", []):
|
943 |
-
resource = entry.get("resource", {})
|
944 |
-
if resource.get("resourceType") == "Patient":
|
945 |
-
patients.append(resource)
|
946 |
-
|
947 |
-
# Generate HTML card
|
948 |
-
html = "<h3 style='color:#00FFFF; text-shadow: 0 0 2px #00FFFF;'>Patients</h3>" # Neon Sub-header
|
949 |
-
for patient in patients:
|
950 |
-
# Extract name
|
951 |
-
name = patient.get("name", [{}])[0]
|
952 |
-
given = " ".join(name.get("given", ["Unknown"]))
|
953 |
-
family = name.get("family", "Unknown")
|
954 |
-
|
955 |
-
# Extract other details
|
956 |
-
gender = patient.get("gender", "unknown").capitalize()
|
957 |
-
birth_date = patient.get("birthDate", "Unknown")
|
958 |
-
|
959 |
-
# Generate HTML card with cyberpunk styling
|
960 |
-
html += f"""
|
961 |
-
<div style="border: 1px solid #00FFFF; padding: 10px; margin: 10px 0; border-radius: 5px; background-color: #222; box-shadow: 0 0 5px #00FFFF;">
|
962 |
-
<h4 style='color:#00FFFF;'>{given} {family}</h4>
|
963 |
-
<p style='color:#A9A9A9;'><strong>Gender:</strong> <span style='color:#00FFFF;'>{gender}</span></p>
|
964 |
-
<p style='color:#A9A9A9;'><strong>Birth Date:</strong> <span style='color:#00FFFF;'>{birth_date}</span></p>
|
965 |
-
<p style='color:#A9A9A9;'><strong>ID:</strong> <span style='color:#00FFFF;'>{patient.get("id", "Unknown")}</span></p>
|
966 |
-
</div>
|
967 |
-
"""
|
968 |
-
|
969 |
-
return html
|
970 |
-
except Exception as e:
|
971 |
-
return f"<p style='color:#FF6347;'>Error parsing patient data: {str(e)}</p>" # Tomato Error
|
972 |
-
except Exception as e:
|
973 |
-
return f"<p style='color:#FF6347;'>Error fetching patient data: {str(e)}</p>" # Tomato Error
|
974 |
-
|
975 |
-
|
976 |
-
with gr.Tab("Discharge Form", elem_classes="cyberpunk-tab"): # Optional: Class for tab styling
|
977 |
-
gr.Markdown("<h2 style='color:#00FFFF; text-shadow: 0 0 3px #00FFFF;'>Patient Details</h2>") # Neon Tab Header
|
978 |
-
with gr.Row():
|
979 |
-
first_name = gr.Textbox(label="First Name")
|
980 |
-
last_name = gr.Textbox(label="Last Name")
|
981 |
-
middle_initial = gr.Textbox(label="Middle Initial")
|
982 |
-
with gr.Row():
|
983 |
-
dob = gr.Textbox(label="Date of Birth")
|
984 |
-
age = gr.Textbox(label="Age")
|
985 |
-
sex = gr.Textbox(label="Sex")
|
986 |
-
address = gr.Textbox(label="Address")
|
987 |
-
with gr.Row():
|
988 |
-
city = gr.Textbox(label="City")
|
989 |
-
state = gr.Textbox(label="State")
|
990 |
-
zip_code = gr.Textbox(label="Zip Code")
|
991 |
-
gr.Markdown("<h2 style='color:#00FFFF; text-shadow: 0 0 3px #00FFFF;'>Primary Healthcare Professional Details</h2>") # Neon Sub-header
|
992 |
-
with gr.Row():
|
993 |
-
doctor_first_name = gr.Textbox(label="Doctor's First Name")
|
994 |
-
doctor_last_name = gr.Textbox(label="Doctor's Last Name")
|
995 |
-
doctor_middle_initial = gr.Textbox(label="Doctor's Middle Initial")
|
996 |
-
hospital_name = gr.Textbox(label="Hospital/Clinic Name")
|
997 |
-
doctor_address = gr.Textbox(label="Address")
|
998 |
-
with gr.Row():
|
999 |
-
doctor_city = gr.Textbox(label="City")
|
1000 |
-
doctor_state = gr.Textbox(label="State")
|
1001 |
-
doctor_zip = gr.Textbox(label="Zip Code")
|
1002 |
-
gr.Markdown("<h2 style='color:#00FFFF; text-shadow: 0 0 3px #00FFFF;'>Admission and Discharge Details</h2>") # Neon Sub-header
|
1003 |
-
with gr.Row():
|
1004 |
-
admission_date = gr.Textbox(label="Date of Admission")
|
1005 |
-
referral_source = gr.Textbox(label="Source of Referral")
|
1006 |
-
admission_method = gr.Textbox(label="Method of Admission")
|
1007 |
-
with gr.Row():
|
1008 |
-
discharge_date = gr.Textbox(label="Date of Discharge")
|
1009 |
-
discharge_reason = gr.Radio(
|
1010 |
-
["Treated", "Transferred", "Discharge Against Advice", "Patient Died"],
|
1011 |
-
label="Discharge Reason",
|
1012 |
-
)
|
1013 |
-
date_of_death = gr.Textbox(label="Date of Death (if applicable)")
|
1014 |
-
gr.Markdown("<h2 style='color:#00FFFF; text-shadow: 0 0 3px #00FFFF;'>Diagnosis & Procedures</h2>") # Neon Sub-header
|
1015 |
-
diagnosis = gr.Textbox(label="Diagnosis")
|
1016 |
-
procedures = gr.Textbox(label="Operation & Procedures")
|
1017 |
-
gr.Markdown("<h2 style='color:#00FFFF; text-shadow: 0 0 3px #00FFFF;'>Medication Details</h2>") # Neon Sub-header
|
1018 |
-
medications = gr.Textbox(label="Medication on Discharge")
|
1019 |
-
gr.Markdown("<h2 style='color:#00FFFF; text-shadow: 0 0 3px #00FFFF;'>Prepared By</h2>") # Neon Sub-header
|
1020 |
-
with gr.Row():
|
1021 |
-
preparer_name = gr.Textbox(label="Name")
|
1022 |
-
preparer_job_title = gr.Textbox(label="Job Title")
|
1023 |
-
|
1024 |
-
# Add buttons for both display form and generate PDF
|
1025 |
-
with gr.Row():
|
1026 |
-
submit_display = gr.Button("Display Form", elem_classes="cyberpunk-button") # Cyberpunk button style
|
1027 |
-
submit_pdf = gr.Button("Generate PDF (No AI)", elem_classes="cyberpunk-button") # Renamed button to clarify no AI and styled
|
1028 |
-
|
1029 |
-
# Output areas
|
1030 |
-
form_output = gr.HTML() # Use HTML to render styled form
|
1031 |
-
pdf_output = gr.File(label="Download PDF (No AI)") # Renamed output to clarify no AI
|
1032 |
-
|
1033 |
-
# Connect the display form button
|
1034 |
-
submit_display.click(
|
1035 |
-
display_form,
|
1036 |
-
inputs=[
|
1037 |
-
first_name,
|
1038 |
-
last_name,
|
1039 |
-
middle_initial,
|
1040 |
-
dob,
|
1041 |
-
age,
|
1042 |
-
sex,
|
1043 |
-
address,
|
1044 |
-
city,
|
1045 |
-
state,
|
1046 |
-
zip_code,
|
1047 |
-
doctor_first_name,
|
1048 |
-
doctor_last_name,
|
1049 |
-
doctor_middle_initial,
|
1050 |
-
hospital_name,
|
1051 |
-
doctor_address,
|
1052 |
-
doctor_city,
|
1053 |
-
doctor_state,
|
1054 |
-
doctor_zip,
|
1055 |
-
admission_date,
|
1056 |
-
referral_source,
|
1057 |
-
admission_method,
|
1058 |
-
discharge_date,
|
1059 |
-
discharge_reason,
|
1060 |
-
date_of_death,
|
1061 |
-
diagnosis,
|
1062 |
-
procedures,
|
1063 |
-
medications,
|
1064 |
-
preparer_name,
|
1065 |
-
preparer_job_title,
|
1066 |
-
],
|
1067 |
-
outputs=form_output
|
1068 |
-
)
|
1069 |
-
|
1070 |
-
# Connect the generate PDF button (No AI version)
|
1071 |
-
submit_pdf.click(
|
1072 |
-
generate_pdf_from_form,
|
1073 |
-
inputs=[
|
1074 |
-
first_name,
|
1075 |
-
last_name,
|
1076 |
-
middle_initial,
|
1077 |
-
dob,
|
1078 |
-
age,
|
1079 |
-
sex,
|
1080 |
-
address,
|
1081 |
-
city,
|
1082 |
-
state,
|
1083 |
-
zip_code,
|
1084 |
-
doctor_first_name,
|
1085 |
-
doctor_last_name,
|
1086 |
-
doctor_middle_initial,
|
1087 |
-
hospital_name,
|
1088 |
-
doctor_address,
|
1089 |
-
doctor_city,
|
1090 |
-
doctor_state,
|
1091 |
-
doctor_zip,
|
1092 |
-
admission_date,
|
1093 |
-
referral_source,
|
1094 |
-
admission_method,
|
1095 |
-
discharge_date,
|
1096 |
-
discharge_reason,
|
1097 |
-
date_of_death,
|
1098 |
-
diagnosis,
|
1099 |
-
procedures,
|
1100 |
-
medications,
|
1101 |
-
preparer_name,
|
1102 |
-
preparer_job_title,
|
1103 |
-
],
|
1104 |
-
outputs=pdf_output
|
1105 |
-
)
|
1106 |
-
|
1107 |
-
with gr.Tab("Medical File Analysis", elem_classes="cyberpunk-tab"): # Optional: Class for tab styling
|
1108 |
-
gr.Markdown("<h2 style='color:#00FFFF; text-shadow: 0 0 3px #00FFFF;'>Analyze Medical Files with Discharge Guard AI</h2>") # Neon Tab Header
|
1109 |
-
with gr.Column():
|
1110 |
-
dicom_file = gr.File(
|
1111 |
-
file_types=[".dcm"], label="Upload DICOM File (.dcm)"
|
1112 |
-
)
|
1113 |
-
dicom_ai_output = gr.Textbox(label="DICOM Analysis Report", lines=5)
|
1114 |
-
analyze_dicom_button = gr.Button("Analyze DICOM with AI", elem_classes="cyberpunk-button") # Cyberpunk button style
|
1115 |
-
|
1116 |
-
hl7_file = gr.File(
|
1117 |
-
file_types=[".hl7"], label="Upload HL7 File (.hl7)"
|
1118 |
-
)
|
1119 |
-
hl7_ai_output = gr.Textbox(label="HL7 Analysis Report", lines=5)
|
1120 |
-
analyze_hl7_button = gr.Button("Analyze HL7 with AI", elem_classes="cyberpunk-button") # Cyberpunk button style
|
1121 |
-
|
1122 |
-
xml_file = gr.File(
|
1123 |
-
file_types=[".xml"], label="Upload XML File (.xml)"
|
1124 |
-
)
|
1125 |
-
xml_ai_output = gr.Textbox(label="XML Analysis Report", lines=5)
|
1126 |
-
analyze_xml_button = gr.Button("Analyze XML with AI", elem_classes="cyberpunk-button") # Cyberpunk button style
|
1127 |
-
|
1128 |
-
ccda_file = gr.File(
|
1129 |
-
file_types=[".xml", ".cda", ".ccd"], label="Upload CCDA File (.xml, .cda, .ccd)"
|
1130 |
-
)
|
1131 |
-
ccda_ai_output = gr.Textbox(label="CCDA Analysis Report", lines=5)
|
1132 |
-
analyze_ccda_button = gr.Button("Analyze CCDA with AI", elem_classes="cyberpunk-button") # Cyberpunk button style
|
1133 |
-
|
1134 |
-
ccd_file = gr.File(
|
1135 |
-
file_types=[".ccd"],
|
1136 |
-
label="Upload CCD File (.ccd)",
|
1137 |
-
) # Redundant, as CCDA also handles .ccd, but kept for clarity
|
1138 |
-
ccd_ai_output = gr.Textbox(
|
1139 |
-
label="CCD Analysis Report", lines=5
|
1140 |
-
) # Redundant
|
1141 |
-
analyze_ccd_button = gr.Button("Analyze CCD with AI", elem_classes="cyberpunk-button") # Cyberpunk button style # Redundant
|
1142 |
-
pdf_file = gr.File(
|
1143 |
-
file_types=[".pdf"], label="Upload PDF File (.pdf)"
|
1144 |
-
)
|
1145 |
-
pdf_ai_output = gr.Textbox(label="PDF Analysis Report", lines=5)
|
1146 |
-
analyze_pdf_button = gr.Button("Analyze PDF with AI", elem_classes="cyberpunk-button") # Cyberpunk button style
|
1147 |
-
|
1148 |
-
csv_file = gr.File(
|
1149 |
-
file_types=[".csv"], label="Upload CSV File (.csv)"
|
1150 |
-
)
|
1151 |
-
csv_ai_output = gr.Textbox(label="CSV Analysis Report", lines=5)
|
1152 |
-
analyze_csv_button = gr.Button("Analyze CSV with AI", elem_classes="cyberpunk-button") # Cyberpunk button style
|
1153 |
-
|
1154 |
-
# Connect AI Analysis Buttons - using REAL AI functions now
|
1155 |
-
analyze_dicom_button.click(
|
1156 |
-
analyze_dicom_file_with_ai, # Call REAL AI function
|
1157 |
-
inputs=dicom_file,
|
1158 |
-
outputs=dicom_ai_output
|
1159 |
-
)
|
1160 |
-
analyze_hl7_button.click(
|
1161 |
-
analyze_hl7_file_with_ai, # Call REAL AI function
|
1162 |
-
inputs=hl7_file,
|
1163 |
-
outputs=hl7_ai_output
|
1164 |
-
)
|
1165 |
-
analyze_xml_button.click(
|
1166 |
-
analyze_cda_xml_file_with_ai, # Call REAL AI function
|
1167 |
-
inputs=xml_file,
|
1168 |
-
outputs=xml_ai_output
|
1169 |
-
)
|
1170 |
-
analyze_ccda_button.click(
|
1171 |
-
analyze_cda_xml_file_with_ai, # Call REAL AI function
|
1172 |
-
inputs=ccda_file,
|
1173 |
-
outputs=ccda_ai_output
|
1174 |
-
)
|
1175 |
-
analyze_ccd_button.click( # Redundant button, but kept for UI if needed
|
1176 |
-
analyze_cda_xml_file_with_ai, # Call REAL AI function
|
1177 |
-
inputs=ccd_file,
|
1178 |
-
outputs=ccd_ai_output
|
1179 |
-
)
|
1180 |
-
analyze_pdf_button.click(
|
1181 |
-
analyze_pdf_file_with_ai, inputs=pdf_file, outputs=pdf_ai_output
|
1182 |
-
)
|
1183 |
-
analyze_csv_button.click(
|
1184 |
-
analyze_csv_file_with_ai, inputs=csv_file, outputs=csv_ai_output
|
1185 |
-
)
|
1186 |
-
|
1187 |
-
with gr.Tab(
|
1188 |
-
"One-Click Discharge Paper (AI)", elem_classes="cyberpunk-tab"
|
1189 |
-
): # New Tab for One-Click Discharge Paper with AI, styled
|
1190 |
-
gr.Markdown("<h2 style='color:#00FFFF; text-shadow: 0 0 3px #00FFFF;'>One-Click Medical Discharge Paper Generation with AI Content</h2>") # Neon Tab Header
|
1191 |
-
one_click_ai_pdf_button = gr.Button(
|
1192 |
-
"Generate Discharge Paper with AI (One-Click)", elem_classes="cyberpunk-button"
|
1193 |
-
) # Updated button label and styled
|
1194 |
-
one_click_ai_pdf_status = gr.Textbox(
|
1195 |
-
label="Discharge Paper Generation Status (AI)"
|
1196 |
-
) # Updated status label
|
1197 |
-
one_click_ai_pdf_download = gr.File(
|
1198 |
-
label="Download Discharge Paper (AI)"
|
1199 |
-
) # Updated download label
|
1200 |
-
|
1201 |
-
one_click_ai_pdf_button.click(
|
1202 |
-
generate_discharge_paper_one_click, # Use the one-click function that now calls AI
|
1203 |
-
inputs=[],
|
1204 |
-
outputs=[one_click_ai_pdf_download, one_click_ai_pdf_status],
|
1205 |
-
)
|
1206 |
-
|
1207 |
-
# Connect the patient data buttons
|
1208 |
-
patient_data_button.click(
|
1209 |
-
fn=CALLBACK_MANAGER.get_patient_data,
|
1210 |
-
inputs=None,
|
1211 |
-
outputs=patient_data_output
|
1212 |
-
)
|
1213 |
-
|
1214 |
-
# Connect refresh button to update dashboard
|
1215 |
-
refresh_btn.click(
|
1216 |
-
fn=update_dashboard, inputs=None, outputs=dashboard_output
|
1217 |
-
)
|
1218 |
-
|
1219 |
-
# Corrected the button click function name here to `generate_pdf_from_meldrx` (No AI PDF)
|
1220 |
-
meldrx_pdf_button.click(
|
1221 |
-
fn=generate_pdf_from_meldrx,
|
1222 |
-
inputs=patient_data_output,
|
1223 |
-
outputs=[meldrx_pdf_download, meldrx_pdf_status]
|
1224 |
-
)
|
1225 |
-
|
1226 |
-
# Connect patient data updates to dashboard
|
1227 |
-
patient_data_button.click(
|
1228 |
-
fn=update_dashboard, inputs=None, outputs=dashboard_output
|
1229 |
-
)
|
1230 |
-
|
1231 |
-
# Launch with sharing enabled for public access
|
1232 |
-
demo.launch(ssr_mode=False)
|
|
|
1 |
import gradio as gr
|
2 |
+
from utils.meldrx import MeldRxAPI
|
3 |
import json
|
4 |
import os
|
5 |
import tempfile
|
|
|
8 |
import logging
|
9 |
from huggingface_hub import InferenceClient # Import InferenceClient
|
10 |
from urllib.parse import urlparse, parse_qs # Import URL parsing utilities
|
11 |
+
from utils.callbackmanager import CallbackManager
|
12 |
+
from prompts import system_instructions
|
13 |
# Set up logging
|
14 |
logging.basicConfig(level=logging.INFO)
|
15 |
logger = logging.getLogger(__name__)
|
16 |
|
17 |
# Import PDF utilities
|
18 |
from pdfutils import PDFGenerator, generate_discharge_summary
|
19 |
+
from utils.callbackmanager import CallbackManager
|
20 |
# Import necessary libraries for new file types and AI analysis functions
|
21 |
import pydicom # For DICOM
|
22 |
import hl7 # For HL7
|
|
|
26 |
import io # For IO operations
|
27 |
from PIL import Image # For image handling
|
28 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
29 |
# Initialize Inference Client - Ensure YOUR_HF_TOKEN is set in environment variables or replace with your actual token
|
30 |
HF_TOKEN = os.getenv("HF_TOKEN") # Or replace with your actual token string
|
31 |
if not HF_TOKEN:
|
|
|
35 |
client = InferenceClient(api_key=HF_TOKEN)
|
36 |
model_name = "meta-llama/Llama-3.3-70B-Instruct" # Specify the model to use
|
37 |
|
38 |
+
def generate_pdf_from_form( first_name, last_name, middle_initial, dob, age, sex, address, city, state, zip_code, doctor_first_name, doctor_last_name, doctor_middle_initial, hospital_name, doctor_address, doctor_city, doctor_state, doctor_zip, admission_date, referral_source, admission_method, discharge_date, discharge_reason, date_of_death, diagnosis, procedures, medications, preparer_name, preparer_job_title,):
|
39 |
+
"""Generate a PDF discharge form using the provided data"""
|
40 |
+
|
41 |
+
# Create PDF generator
|
42 |
+
pdf_gen = PDFGenerator()
|
43 |
+
|
44 |
+
# Format data for PDF generation
|
45 |
+
patient_info = {
|
46 |
+
"first_name": first_name,
|
47 |
+
"last_name": last_name,
|
48 |
+
"dob": dob,
|
49 |
+
"age": age,
|
50 |
+
"sex": sex,
|
51 |
+
"mobile": "", # Not collected in the form
|
52 |
+
"address": address,
|
53 |
+
"city": city,
|
54 |
+
"state": state,
|
55 |
+
"zip": zip_code,
|
56 |
+
}
|
57 |
+
|
58 |
+
discharge_info = {
|
59 |
+
"date_of_admission": admission_date,
|
60 |
+
"date_of_discharge": discharge_date,
|
61 |
+
"source_of_admission": referral_source,
|
62 |
+
"mode_of_admission": admission_method,
|
63 |
+
"discharge_against_advice": "Yes"
|
64 |
+
if discharge_reason == "Discharge Against Advice"
|
65 |
+
else "No",
|
66 |
+
}
|
67 |
+
|
68 |
+
diagnosis_info = {
|
69 |
+
"diagnosis": diagnosis,
|
70 |
+
"operation_procedure": procedures,
|
71 |
+
"treatment": "", # Not collected in the form
|
72 |
+
"follow_up": "", # Not collected in the form
|
73 |
+
}
|
74 |
+
|
75 |
+
medication_info = {
|
76 |
+
"medications": [medications] if medications else [],
|
77 |
+
"instructions": "", # Not collected in the form
|
78 |
+
}
|
79 |
+
|
80 |
+
prepared_by = {
|
81 |
+
"name": preparer_name,
|
82 |
+
"title": preparer_job_title,
|
83 |
+
"signature": "", # Not collected in the form
|
84 |
+
}
|
85 |
+
|
86 |
+
# Generate PDF
|
87 |
+
pdf_buffer = pdf_gen.generate_discharge_form(patient_info,discharge_info,diagnosis_info,medication_info,prepared_by,)
|
88 |
+
|
89 |
+
# Create temporary file to save the PDF
|
90 |
+
temp_file = tempfile.NamedTemporaryFile(delete=False, suffix=".pdf")
|
91 |
+
temp_file.write(pdf_buffer.read())
|
92 |
+
temp_file_path = temp_file.name
|
93 |
+
temp_file.close()
|
94 |
+
|
95 |
+
return temp_file_path
|
96 |
+
|
97 |
+
|
98 |
+
def generate_pdf_from_meldrx(patient_data):
|
99 |
+
"""Generate a PDF using patient data from MeldRx"""
|
100 |
+
if isinstance(patient_data, str):
|
101 |
+
# If it's a string (error message or JSON string), try to parse it
|
102 |
+
try:
|
103 |
+
patient_data = json.loads(patient_data)
|
104 |
+
except:
|
105 |
+
return None, "Invalid patient data format"
|
106 |
+
|
107 |
+
if not patient_data:
|
108 |
+
return None, "No patient data available"
|
109 |
+
|
110 |
+
try:
|
111 |
+
# For demonstration, we'll use the first patient in the list if it's a list
|
112 |
+
if isinstance(patient_data, list) and len(patient_data):
|
113 |
+
patient = patient_data[0]
|
114 |
+
else:
|
115 |
+
patient = patient_data
|
116 |
+
|
117 |
+
# Extract patient info
|
118 |
+
patient_info = {
|
119 |
+
"name": f"{patient.get('name', {}).get('given', [''])[0]} {patient.get('name', {}).get('family', '')}",
|
120 |
+
"dob": patient.get("birthDate", "Unknown"),
|
121 |
+
"patient_id": patient.get("id", "Unknown"),
|
122 |
+
"admission_date": datetime.now().strftime("%Y-%m-%d"), # Mock data
|
123 |
+
"physician": "Dr. Provider", # Mock data
|
124 |
+
}
|
125 |
+
|
126 |
+
# Mock LLM-generated content - This part needs to be replaced with actual AI generation if desired for MeldRx PDF
|
127 |
+
llm_content = {
|
128 |
+
"diagnosis": "Diagnosis information would be generated by AI based on patient data from MeldRx.",
|
129 |
+
"treatment": "Treatment summary would be generated by AI based on patient data from MeldRx.",
|
130 |
+
"medications": "Medication list would be generated by AI based on patient data from MeldRx.",
|
131 |
+
"follow_up": "Follow-up instructions would be generated by AI based on patient data from MeldRx.",
|
132 |
+
"special_instructions": "Special instructions would be generated by AI based on patient data from MeldRx.",
|
133 |
+
}
|
134 |
+
|
135 |
+
# Create discharge summary - Using No-AI PDF generation for now, replace with AI-content generation later
|
136 |
+
output_dir = tempfile.mkdtemp()
|
137 |
+
pdf_path = generate_discharge_summary(
|
138 |
+
patient_info, llm_content, output_dir
|
139 |
+
) # Still using No-AI template
|
140 |
+
|
141 |
+
return pdf_path, "PDF generated successfully (No AI Content in PDF yet)" # Indicate No-AI content
|
142 |
+
|
143 |
+
except Exception as e:
|
144 |
+
return None, f"Error generating PDF: {str(e)}"
|
145 |
+
|
146 |
+
# CALLBACK_MANAGER = CallbackManager(
|
147 |
+
# redirect_uri="https://multitransformer-discharge-guard.hf.space/callback",
|
148 |
+
# client_secret=None,
|
149 |
+
# )
|
150 |
+
|
151 |
+
def generate_ai_discharge_content(patient_data):
|
152 |
+
"""Placeholder function to generate AI content for discharge summary.
|
153 |
+
Replace this with actual AI call using InferenceClient and patient_data."""
|
154 |
+
try:
|
155 |
+
patient_name = (
|
156 |
+
f"{patient_data['entry'][0]['resource']['name'][0]['given'][0]} {patient_data['entry'][0]['resource']['name'][0]['family']}"
|
157 |
+
if patient_data.get("entry")
|
158 |
+
else "Unknown Patient"
|
159 |
+
)
|
160 |
+
prompt_text = f"""{system_instructions}\n\nGenerate a discharge summary content (diagnosis, treatment, medications, follow-up instructions, special instructions) for patient: {patient_name}. Base the content on available patient data (if any provided, currently not provided in detail in this mock-up). Focus on creating clinically relevant and informative summary. Remember this is for informational purposes and NOT medical advice."""
|
161 |
+
|
162 |
+
response = client.chat.completions.create(
|
163 |
+
model=model_name,
|
164 |
+
messages=[{"role": "user", "content": prompt_text}],
|
165 |
+
temperature=0.6, # Adjust temperature as needed for content generation
|
166 |
+
max_tokens=1024, # Adjust max_tokens as needed
|
167 |
+
top_p=0.9,
|
168 |
+
)
|
169 |
+
ai_content = response.choices[0].message.content
|
170 |
+
|
171 |
+
# Basic parsing of AI content - improve this based on desired output structure from LLM
|
172 |
+
llm_content = {
|
173 |
+
"diagnosis": "AI Generated Diagnosis (Placeholder):\n"
|
174 |
+
+ extract_section(ai_content, "Diagnosis"), # Example extraction - refine based on LLM output
|
175 |
+
"treatment": "AI Generated Treatment (Placeholder):\n"
|
176 |
+
+ extract_section(ai_content, "Treatment"),
|
177 |
+
"medications": "AI Generated Medications (Placeholder):\n"
|
178 |
+
+ extract_section(ai_content, "Medications"),
|
179 |
+
"follow_up": "AI Generated Follow-up (Placeholder):\n"
|
180 |
+
+ extract_section(ai_content, "Follow-up Instructions"),
|
181 |
+
"special_instructions": "AI Generated Special Instructions (Placeholder):\n"
|
182 |
+
+ extract_section(ai_content, "Special Instructions"),
|
183 |
+
}
|
184 |
+
return llm_content
|
185 |
+
|
186 |
+
except Exception as e:
|
187 |
+
logger.error(f"Error generating AI discharge content: {e}")
|
188 |
+
return None
|
189 |
+
|
190 |
+
|
191 |
+
def extract_section(ai_content, section_title):
|
192 |
+
"""Simple placeholder function to extract section from AI content.
|
193 |
+
Improve this with more robust parsing based on LLM output format."""
|
194 |
+
start_marker = f"**{section_title}:**"
|
195 |
+
end_marker = "\n\n" # Adjust based on typical LLM output structure
|
196 |
+
start_index = ai_content.find(start_marker)
|
197 |
+
if start_index != -1:
|
198 |
+
start_index += len(start_marker)
|
199 |
+
end_index = ai_content.find(end_marker, start_index)
|
200 |
+
if end_index != -1:
|
201 |
+
return ai_content[start_index:end_index].strip()
|
202 |
+
return "Not found in AI output."
|
203 |
+
|
204 |
+
|
205 |
+
def generate_pdf_from_meldrx_with_ai_content(patient_data, llm_content):
|
206 |
+
"""Generate a PDF using patient data from MeldRx and AI-generated content."""
|
207 |
+
if isinstance(patient_data, str):
|
208 |
+
try:
|
209 |
+
patient_data = json.loads(patient_data)
|
210 |
+
except:
|
211 |
+
return None, "Invalid patient data format"
|
212 |
+
|
213 |
+
if not patient_data:
|
214 |
+
return None, "No patient data available"
|
215 |
+
|
216 |
+
try:
|
217 |
+
if isinstance(patient_data, list) and len(patient_data):
|
218 |
+
patient = patient_data[0]
|
219 |
+
else:
|
220 |
+
patient = patient_data
|
221 |
+
|
222 |
+
patient_info = {
|
223 |
+
"name": f"{patient.get('name', {}).get('given', [''])[0]} {patient.get('name', {}).get('family', '')}",
|
224 |
+
"dob": patient.get("birthDate", "Unknown"),
|
225 |
+
"patient_id": patient.get("id", "Unknown"),
|
226 |
+
"admission_date": datetime.now().strftime("%Y-%m-%d"), # Mock data
|
227 |
+
"physician": "Dr. AI Provider", # Mock data - Indicate AI generated
|
228 |
+
}
|
229 |
+
|
230 |
+
output_dir = tempfile.mkdtemp()
|
231 |
+
pdf_path = generate_discharge_summary(
|
232 |
+
patient_info, llm_content, output_dir
|
233 |
+
) # Using AI content now
|
234 |
+
|
235 |
+
return pdf_path, "PDF generated successfully with AI Content" # Indicate AI content
|
236 |
+
|
237 |
+
except Exception as e:
|
238 |
+
return None, f"Error generating PDF with AI content: {str(e)}"
|
239 |
+
|
240 |
|
241 |
def analyze_dicom_file_with_ai(dicom_file_path): # Modified to accept file path
|
242 |
"""Analyzes DICOM file metadata using Discharge Guard AI."""
|
|
|
558 |
trace_data_detail_csv_analysis["error"] = f"AI Analysis Error: {e}"
|
559 |
return error_message, trace_data_detail_csv_analysis
|
560 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
meldrx.py → utils/meldrx.py
RENAMED
File without changes
|