import gradio as gr from utils.meldrx import MeldRxAPI import json import os import tempfile from datetime import datetime import traceback import logging from huggingface_hub import InferenceClient # Import InferenceClient from urllib.parse import urlparse, parse_qs # Import URL parsing utilities from utils.callbackmanager import CallbackManager from utils.prompts import system_instructions # Import PDF utilities from utils.pdfutils import PDFGenerator, generate_discharge_summary from utils.callbackmanager import CallbackManager # Import necessary libraries for new file types and AI analysis functions import pydicom # For DICOM import hl7 # For HL7 from xml.etree import ElementTree # For XML and CCDA from pypdf import PdfReader # For PDF import csv # For CSV import io # For IO operations from PIL import Image # For image handling # Set up logging logging.basicConfig(level=logging.INFO) logger = logging.getLogger(__name__) # Initialize Inference Client - Ensure YOUR_HF_TOKEN is set in environment variables or replace with your actual token HF_TOKEN = os.getenv("HF_TOKEN") # Or replace with your actual token string if not HF_TOKEN: raise ValueError( "HF_TOKEN environment variable not set. Please set your Hugging Face API token." ) client = InferenceClient(api_key=HF_TOKEN) model_name = "meta-llama/Llama-3.3-70B-Instruct" # Specify the model to use def generate_pdf_from_form( first_name, last_name, middle_initial, dob, age, sex, address, city, state, zip_code, doctor_first_name, doctor_last_name, doctor_middle_initial, hospital_name, doctor_address, doctor_city, doctor_state, doctor_zip, admission_date, referral_source, admission_method, discharge_date, discharge_reason, date_of_death, diagnosis, procedures, medications, preparer_name, preparer_job_title,): """Generate a PDF discharge form using the provided data""" # Create PDF generator pdf_gen = PDFGenerator() # Format data for PDF generation patient_info = { "first_name": first_name, "last_name": last_name, "dob": dob, "age": age, "sex": sex, "mobile": "", # Not collected in the form "address": address, "city": city, "state": state, "zip": zip_code, } discharge_info = { "date_of_admission": admission_date, "date_of_discharge": discharge_date, "source_of_admission": referral_source, "mode_of_admission": admission_method, "discharge_against_advice": "Yes" if discharge_reason == "Discharge Against Advice" else "No", } diagnosis_info = { "diagnosis": diagnosis, "operation_procedure": procedures, "treatment": "", # Not collected in the form "follow_up": "", # Not collected in the form } medication_info = { "medications": [medications] if medications else [], "instructions": "", # Not collected in the form } prepared_by = { "name": preparer_name, "title": preparer_job_title, "signature": "", # Not collected in the form } # Generate PDF pdf_buffer = pdf_gen.generate_discharge_form(patient_info,discharge_info,diagnosis_info,medication_info,prepared_by,) # Create temporary file to save the PDF temp_file = tempfile.NamedTemporaryFile(delete=False, suffix=".pdf") temp_file.write(pdf_buffer.read()) temp_file_path = temp_file.name temp_file.close() return temp_file_path def generate_pdf_from_meldrx(patient_data): """Generate a PDF using patient data from MeldRx""" if isinstance(patient_data, str): # If it's a string (error message or JSON string), try to parse it try: patient_data = json.loads(patient_data) except: return None, "Invalid patient data format" if not patient_data: return None, "No patient data available" try: # For demonstration, we'll use the first patient in the list if it's a list if isinstance(patient_data, list) and len(patient_data): patient = patient_data[0] else: patient = patient_data # Extract patient info patient_info = { "name": f"{patient.get('name', {}).get('given', [''])[0]} {patient.get('name', {}).get('family', '')}", "dob": patient.get("birthDate", "Unknown"), "patient_id": patient.get("id", "Unknown"), "admission_date": datetime.now().strftime("%Y-%m-%d"), # Mock data "physician": "Dr. Provider", # Mock data } # Mock LLM-generated content - This part needs to be replaced with actual AI generation if desired for MeldRx PDF llm_content = { "diagnosis": "Diagnosis information would be generated by AI based on patient data from MeldRx.", "treatment": "Treatment summary would be generated by AI based on patient data from MeldRx.", "medications": "Medication list would be generated by AI based on patient data from MeldRx.", "follow_up": "Follow-up instructions would be generated by AI based on patient data from MeldRx.", "special_instructions": "Special instructions would be generated by AI based on patient data from MeldRx.", } # Create discharge summary - Using No-AI PDF generation for now, replace with AI-content generation later output_dir = tempfile.mkdtemp() pdf_path = generate_discharge_summary( patient_info, llm_content, output_dir ) # Still using No-AI template return pdf_path, "PDF generated successfully (No AI Content in PDF yet)" # Indicate No-AI content except Exception as e: return None, f"Error generating PDF: {str(e)}" # CALLBACK_MANAGER = CallbackManager( # redirect_uri="https://multitransformer-discharge-guard.hf.space/callback", # client_secret=None, # ) def generate_ai_discharge_content(patient_data): """Placeholder function to generate AI content for discharge summary. Replace this with actual AI call using InferenceClient and patient_data.""" try: patient_name = ( f"{patient_data['entry'][0]['resource']['name'][0]['given'][0]} {patient_data['entry'][0]['resource']['name'][0]['family']}" if patient_data.get("entry") else "Unknown Patient" ) prompt_text = f"""{system_instructions}\n\nGenerate a discharge summary content (diagnosis, treatment, medications, follow-up instructions, special instructions) for patient: {patient_name}. Base the content on available patient data (if any provided, currently not provided in detail in this mock-up). Focus on creating clinically relevant and informative summary. Remember this is for informational purposes and NOT medical advice.""" response = client.chat.completions.create( model=model_name, messages=[{"role": "user", "content": prompt_text}], temperature=0.6, # Adjust temperature as needed for content generation max_tokens=1024, # Adjust max_tokens as needed top_p=0.9, ) ai_content = response.choices[0].message.content # Basic parsing of AI content - improve this based on desired output structure from LLM llm_content = { "diagnosis": "AI Generated Diagnosis (Placeholder):\n" + extract_section(ai_content, "Diagnosis"), # Example extraction - refine based on LLM output "treatment": "AI Generated Treatment (Placeholder):\n" + extract_section(ai_content, "Treatment"), "medications": "AI Generated Medications (Placeholder):\n" + extract_section(ai_content, "Medications"), "follow_up": "AI Generated Follow-up (Placeholder):\n" + extract_section(ai_content, "Follow-up Instructions"), "special_instructions": "AI Generated Special Instructions (Placeholder):\n" + extract_section(ai_content, "Special Instructions"), } return llm_content except Exception as e: logger.error(f"Error generating AI discharge content: {e}") return None def extract_section(ai_content, section_title): """Simple placeholder function to extract section from AI content. Improve this with more robust parsing based on LLM output format.""" start_marker = f"**{section_title}:**" end_marker = "\n\n" # Adjust based on typical LLM output structure start_index = ai_content.find(start_marker) if start_index != -1: start_index += len(start_marker) end_index = ai_content.find(end_marker, start_index) if end_index != -1: return ai_content[start_index:end_index].strip() return "Not found in AI output." def generate_pdf_from_meldrx_with_ai_content(patient_data, llm_content): """Generate a PDF using patient data from MeldRx and AI-generated content.""" if isinstance(patient_data, str): try: patient_data = json.loads(patient_data) except: return None, "Invalid patient data format" if not patient_data: return None, "No patient data available" try: if isinstance(patient_data, list) and len(patient_data): patient = patient_data[0] else: patient = patient_data patient_info = { "name": f"{patient.get('name', {}).get('given', [''])[0]} {patient.get('name', {}).get('family', '')}", "dob": patient.get("birthDate", "Unknown"), "patient_id": patient.get("id", "Unknown"), "admission_date": datetime.now().strftime("%Y-%m-%d"), # Mock data "physician": "Dr. AI Provider", # Mock data - Indicate AI generated } output_dir = tempfile.mkdtemp() pdf_path = generate_discharge_summary( patient_info, llm_content, output_dir ) # Using AI content now return pdf_path, "PDF generated successfully with AI Content" # Indicate AI content except Exception as e: return None, f"Error generating PDF with AI content: {str(e)}" def analyze_dicom_file_with_ai(dicom_file_path): # Modified to accept file path """Analyzes DICOM file metadata using Discharge Guard AI.""" try: dicom_file = pydicom.dcmread( dicom_file_path.name ) # Read dicom using path, access file through .name for Gradio UploadedFile dicom_metadata_json = dicom_file.to_json_dict() prediction_response, trace_data_dicom_ai = analyze_dicom_content_ai( dicom_metadata_json ) # Call content analysis if prediction_response: report = f"Discharge Guard AI Analysis of DICOM Metadata:\n\nDICOM Metadata Analysis Report:\n{prediction_response}\n\nDisclaimer: The Discharge Guard -generated analysis is for conceptual informational purposes only and may or **NOT medical advice.** Analysis is based on DICOM *metadata* and not image interpretation." return report else: error_message = f"AI Analysis from DICOM Metadata: No predictions generated or analysis encountered an issue." if trace_data_dicom_ai and "error" in trace_data_dicom_ai: error_message += f"\nAI Analysis Failed: {trace_data_dicom_ai['error']}" return error_message except Exception as e: return f"Error during DICOM file processing in analyze_dicom_file_with_ai: {e}" def analyze_dicom_content_ai(dicom_metadata_json): # Copied from your code """Analyzes DICOM metadata JSON content using Discharge Guard AI.""" prompt_text = f"""{system_instructions} \n\n Perform a **deep and comprehensive analysis** of the following DICOM metadata in JSON format to provide a **structured summary and identify potential clinically relevant information with deep insights**. Focus not just on summarizing fields, but on **interpreting their clinical significance, identifying subtle patterns, and drawing inferences about the study's implications**. Think like an experienced radiologist reviewing this metadata for crucial diagnostic clues. Remember this is metadata, not the image itself, so focus on what can be gleaned from the data itself. Provide a "**Deep DICOM Metadata Analysis Report**". Important: Use the API Directories fhir endpoints FROM THIS LINK: https://app.meldrx.com/api/directories/fhir/endpoints. **DICOM Metadata (JSON):** ```json {json.dumps(dicom_metadata_json, indent=2)} ``` * Remember, this deep analysis is for conceptual informational purposes only and **NOT medical advice.** Focus on deep summarization and structuring the extracted metadata in a highly clinically relevant way. """ trace_data_detail_dicom_analysis = { "prompt": "DICOM Metadata Analysis Request", "language": "English", "response_length": "Comprehensive", "model_name": "Discharge Guard v1.0", "generated_text": "N/A", "input_file_types": ["DICOM Metadata JSON"], "mode": "DICOM Metadata Analysis", "candidates": [], "usage_metadata": {}, "prompt_feedback": "N/A", } try: response = client.chat.completions.create( model=model_name, messages=[{"role": "user", "content": prompt_text}], temperature=0.4, max_tokens=1024, # Adjust as needed top_p=0.9, ) the_response = response.choices[0].message.content return the_response, trace_data_detail_dicom_analysis except Exception as e: error_message = f"AI Analysis Error in analyze_dicom_content_ai (DICOM Metadata): {e}" trace_data_detail_dicom_analysis["error"] = f"AI Analysis Error: {e}" return error_message, trace_data_detail_dicom_analysis # ... (Paste other AI analysis functions: analyze_hl7_file_with_ai, analyze_cda_xml_file_with_ai, analyze_pdf_file_with_ai, analyze_csv_file_with_ai here - ensure to adapt file reading for Gradio file paths if necessary) ... def analyze_hl7_file_with_ai(hl7_file_path): """Analyzes HL7 file content using Discharge Guard AI.""" try: with open(hl7_file_path.name, "r") as f: # Open file using path, access file through .name for Gradio UploadedFile hl7_message_raw = f.read() prediction_response, trace_data_hl7_ai = analyze_hl7_content_ai( hl7_message_raw ) if prediction_response: report = f"Discharge Guard AI Analysis of HL7 Message:\n\nHL7 Message Analysis Report:\n{prediction_response}\n\n**Disclaimer:** The Discharge Guard AGI-generated analysis is for conceptual informational purposes only and may or **NOT medical advice.** Analysis is based on HL7 message content." return report else: error_message = f"AI Analysis from HL7 Message: No predictions generated or analysis encountered an issue." if trace_data_hl7_ai and "error" in trace_data_hl7_ai: error_message += f"AI Analysis Failed: {trace_data_hl7_ai['error']}" return error_message except Exception as e: return f"Error during HL7 file processing in analyze_hl7_file_with_ai: {e}" def analyze_hl7_content_ai(hl7_message_string): # Copied from your code """Analyzes HL7 message content using Discharge Guard AI.""" prompt_text = f"""{system_instructions} \n\n Conduct a **deep and thorough analysis** of the following HL7 message content to provide a **structured summary and identify key clinical information with deep understanding**. Go beyond basic parsing; aim to **interpret the clinical narrative** embedded within the HL7 message. **Engage in deep search to contextualize medical codes and terminology**. Provide a "**Comprehensive HL7 Message Analysis Report**". **HL7 Message Content:** ```hl7 {hl7_message_string} ``` * Remember, this deep analysis is for conceptual informational purposes only and **NOT medical advice.** Focus on deep summarization and structuring the extracted data in a highly clinically relevant way based on the HL7 content. """ # ... (rest of the function code) ... trace_data_detail_hl7_analysis = { "prompt": "HL7 Message Analysis Request", "language": "English", "response_length": "Comprehensive", "model_name": "Discharge Guard v1.0", "generated_text": "N/A", "input_file_types": ["HL7 Message"], "mode": "HL7 Message Analysis", "candidates": [], "usage_metadata": {}, "prompt_feedback": "N/A", } try: response = client.chat.completions.create( model=model_name, messages=[{"role": "user", "content": prompt_text}], temperature=0.4, max_tokens=1024, # Adjust as needed top_p=0.9, ) the_response = response.choices[0].message.content return the_response, trace_data_detail_hl7_analysis except Exception as e: error_message = f"AI Analysis Error in analyze_hl7_content_ai (HL7 Message): {e}" trace_data_detail_hl7_analysis["error"] = f"AI Analysis Error: {e}" return error_message, trace_data_detail_hl7_analysis def analyze_cda_xml_file_with_ai(cda_xml_file_path): # Modified to accept file path """Analyzes generic CDA or XML file content using Discharge Guard AI (more generalized version) Important: Use the API Directories fhir endpoints FROM THIS LINK: https://app.meldrx.com/api/directories/fhir/endpoints.""" try: with open( cda_xml_file_path.name, "r" ) as f: # Open file using path, access file through .name for Gradio UploadedFile cda_xml_content = f.read() prediction_response, trace_data_cda_xml_ai = analyze_cda_xml_content_ai( cda_xml_content ) if prediction_response: report = f"Discharge Guard AI Analysis of Medical XML/CDA Data:\n\nMedical Document Analysis Report:\n{prediction_response}\n\n**Disclaimer:** The Discharge Guard AGI-generated analysis is for conceptual informational purposes only and may or **NOT medical advice.** Analysis is based on XML/CDA content." return report else: error_message = f"AI Analysis from XML/CDA Data: No predictions generated or analysis encountered an issue." if trace_data_cda_xml_ai and "error" in trace_data_cda_xml_ai: error_message += f"AI Analysis Failed: {trace_data_cda_xml_ai['error']}" return error_message except Exception as e: return f"Error during XML/CDA file processing in analyze_cda_xml_file_with_ai: {e}" def analyze_cda_xml_content_ai(cda_xml_content): # Copied from your code """Analyzes generic CDA or XML content using Discharge Guard AI (more generalized version).""" prompt_text = f"""{system_instructions} \n\n Analyze the following medical XML/CDA content to provide a **structured and comprehensive patient data analysis**, similar to how a medical professional would review a patient's chart or a clinical document. You need to parse the XML structure yourself to extract the relevant information. Use bullet points, tables, or numbered steps for complex tasks. Provide a "Medical Document Analysis" report. **Instructions for Discharge Guard AI:** 1. **Parse the XML content above.** Understand the XML structure to identify sections that are relevant to clinical information. For CDA specifically, look for sections like Problems, Medications, Allergies, Encounters, Results, and Vital Signs. For generic medical XML, adapt based on the tags present. 2. **Extract and Summarize Key Medical Information:** Focus on extracting the following information if present in the XML: * **Patient Demographics Summary:** (If available, summarize demographic details) ... (rest of your prompt_text for CDA/XML analysis) ... * Remember, this analysis is for conceptual informational purposes only and **NOT medical advice.** Focus on summarizing and structuring the extracted data in a clinically relevant way based on the XML/CDA content. """ trace_data_detail_cda_xml_analysis = { "prompt": "Generic CDA/XML Analysis Request", "language": "English", "response_length": "Comprehensive", "model_name": "Discharge Guard v1.0", "generated_text": "N/A", "input_file_types": ["CDA/XML"], "mode": "Generic XML/CDA Analysis", "candidates": [], "usage_metadata": {}, "prompt_feedback": "N/A", } try: response = client.chat.completions.create( model=model_name, messages=[{"role": "user", "content": prompt_text}], temperature=0.4, max_tokens=1024, # Adjust as needed top_p=0.9, ) the_response = response.choices[0].message.content return the_response, trace_data_detail_cda_xml_analysis except Exception as e: error_message = f"AI Analysis Error in analyze_cda_xml_content_ai (Generic XML/CDA): {e}" trace_data_detail_cda_xml_analysis["error"] = f"AI Analysis Error: {e}" return error_message, trace_data_detail_cda_xml_analysis def analyze_pdf_file_with_ai(pdf_file_path): # Modified to accept file path """Analyzes PDF file content using Discharge Guard AI.""" try: with open( pdf_file_path.name, "rb" ) as f: # Open file in binary mode for PdfReader, access file through .name for Gradio UploadedFile pdf_file = f # Pass file object to PdfReader pdf_reader = PdfReader(pdf_file) text_content = "" for page in pdf_reader.pages: text_content += page.extract_text() prediction_response, trace_data_pdf_ai = analyze_pdf_content_ai( text_content ) if prediction_response: report = f"Discharge Guard AI Analysis of PDF Content:\n\nMedical Report Analysis Report:\n{prediction_response}\n\n**Disclaimer:** The Discharge Guard AGI-generated analysis is for conceptual informational purposes only and may or **NOT medical advice.** Analysis is based on PDF text content." return report else: error_message = f"AI Analysis from PDF Content: No predictions generated or analysis encountered an issue." if trace_data_pdf_ai and "error" in trace_data_pdf_ai: error_message += f"AI Analysis Failed: {trace_data_pdf_ai['error']}" return error_message except Exception as e: return f"Error during PDF file processing in analyze_pdf_file_with_ai: {e}" def analyze_pdf_content_ai(pdf_text_content): # Copied from your code """Analyzes PDF text content using Discharge Guard AI.""" prompt_text = f"""{system_instructions} \n\n Analyze the following medical PDF text content to provide a **structured summary and identify key clinical information**. Focus on patient demographics, medical history, findings, diagnoses, medications, recommendations, and any important clinical details conveyed in the document. Provide a "Medical Report Analysis" report. **Medical PDF Text Content:** ```text {pdf_text_content} ``` * Remember, this analysis is for conceptual informational purposes only and **NOT medical advice.** Focus on summarizing and structuring the extracted data in a clinically relevant way based on the PDF content. """ trace_data_detail_pdf_analysis = { "prompt": "PDF Text Analysis Request", "language": "English", "response_length": "Comprehensive", "model_name": "Discharge Guard v1.0", "generated_text": "N/A", "input_file_types": ["PDF Text"], "mode": "PDF Text Analysis", "candidates": [], "usage_metadata": {}, "prompt_feedback": "N/A", } try: response = client.chat.completions.create( model=model_name, messages=[{"role": "user", "content": prompt_text}], temperature=0.4, max_tokens=1024, # Adjust as needed top_p=0.9, ) the_response = response.choices[0].message.content return the_response, trace_data_detail_pdf_analysis except Exception as e: error_message = f"AI Analysis Error in analyze_pdf_content_ai (PDF Text): {e}" trace_data_detail_pdf_analysis["error"] = f"AI Analysis Error: {e}" return error_message, trace_data_detail_pdf_analysis def analyze_csv_file_with_ai(csv_file_path): # Modified to accept file path """Analyzes CSV file content using Discharge Guard AI.""" try: csv_content = csv_file_path.read().decode( "utf-8" ) # Read content directly from UploadedFile prediction_response, trace_data_csv_ai = analyze_csv_content_ai(csv_content) if prediction_response: report = f"Discharge Guard AI Analysis of CSV Data:\n\nData Analysis Report:\n{prediction_response}\n\n**Disclaimer:** The Discharge Guard AGI-generated analysis is for conceptual informational purposes only and may or **NOT medical advice.** Analysis is based on CSV data content." return report else: error_message = f"AI Analysis from CSV Data: No predictions generated or analysis encountered an issue." if trace_data_csv_ai and "error" in trace_data_csv_ai: error_message += f"AI Analysis Failed: {trace_data_csv_ai['error']}" return error_message except Exception as e: return f"Error during CSV file processing in analyze_csv_file_with_ai: {e}" def analyze_csv_content_ai(csv_content_string): # Copied from your code """Analyzes CSV content (string) using Discharge Guard AI.""" prompt_text = f"""{system_instructions} \n\n Analyze the following medical CSV data to provide a **structured summary and identify potential clinical insights**. Assume the CSV represents patient-related medical data. Focus on understanding the columns, summarizing key data points, identifying trends or patterns, and noting any potential clinical significance of the data. Provide a "Data Analysis" report. **Medical CSV Data:** ```csv {csv_content_string} ``` * Remember, this analysis is for conceptual informational purposes only and **NOT medical advice.** Focus on summarizing and structuring the data in a clinically relevant way based on the CSV content. """ trace_data_detail_csv_analysis = { "prompt": "CSV Data Analysis Request", "language": "English", "response_length": "Comprehensive", "model_name": "Discharge Guard v1.0", "generated_text": "N/A", "input_file_types": ["CSV Data"], "mode": "CSV Data Analysis", "candidates": [], "usage_metadata": {}, "prompt_feedback": "N/A", } try: response = client.chat.completions.create( model=model_name, messages=[{"role": "user", "content": prompt_text}], temperature=0.4, max_tokens=1024, # Adjust as needed top_p=0.9, ) the_response = response.choices[0].message.content return the_response, trace_data_detail_csv_analysis except Exception as e: error_message = f"AI Analysis Error in analyze_csv_content_ai (CSV Data): {e}" trace_data_detail_csv_analysis["error"] = f"AI Analysis Error: {e}" return error_message, trace_data_detail_csv_analysis