Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -47,204 +47,257 @@ def init_baselines():
|
|
47 |
|
48 |
adp_table, stacks_table, proj_table = init_baselines()
|
49 |
|
50 |
-
|
51 |
|
52 |
def convert_df_to_csv(df):
|
53 |
return df.to_csv().encode('utf-8')
|
54 |
|
55 |
-
|
56 |
-
|
57 |
-
|
58 |
-
|
59 |
-
|
60 |
-
|
61 |
-
|
62 |
-
|
63 |
-
|
64 |
-
|
65 |
-
|
66 |
-
|
67 |
-
|
68 |
-
|
69 |
-
|
70 |
-
|
71 |
-
|
72 |
-
|
73 |
-
|
74 |
-
|
75 |
-
|
76 |
-
|
77 |
-
stack_size = size_var2
|
78 |
-
|
79 |
-
team_dict = dict(zip(adp_table.Player, adp_table.Team))
|
80 |
-
proj_dict = dict(zip(adp_table.Player, adp_table.Projection))
|
81 |
-
diff_dict = dict(zip(adp_table.Player, adp_table.Diff))
|
82 |
-
|
83 |
-
with col2:
|
84 |
-
stack_hold_container = st.empty()
|
85 |
-
if st.button('Run stack analysis'):
|
86 |
-
comb_list = []
|
87 |
-
if pos_split2 == 'All Positions':
|
88 |
-
slate_teams = adp_table['Team'].values.tolist()
|
89 |
-
raw_baselines = adp_table.copy()
|
90 |
-
elif pos_split2 != 'All Positions':
|
91 |
-
slate_teams = adp_table['Team'].values.tolist()
|
92 |
-
raw_baselines = adp_table[adp_table['Position'].str.contains('|'.join(pos_var2))]
|
93 |
-
|
94 |
-
for cur_team in team_var2:
|
95 |
-
working_baselines = raw_baselines.copy()
|
96 |
-
working_baselines = working_baselines[working_baselines['Team'] == cur_team]
|
97 |
-
order_list = working_baselines['Player']
|
98 |
-
|
99 |
-
comb = combinations(order_list, stack_size)
|
100 |
-
|
101 |
-
for i in list(comb):
|
102 |
-
comb_list.append(i)
|
103 |
-
|
104 |
-
comb_DF = pd.DataFrame(comb_list)
|
105 |
-
|
106 |
-
if stack_size == 3:
|
107 |
-
comb_DF['Team'] = comb_DF[0].map(team_dict)
|
108 |
-
|
109 |
-
comb_DF['Proj'] = comb_DF.apply(lambda row: pd.Series([proj_dict.get(row[i], None) for i in range(3)]).sum(), axis=1)
|
110 |
-
|
111 |
-
comb_DF['ADP_1'] = comb_DF[0].map(adp_dict)
|
112 |
-
comb_DF['ADP_2'] = comb_DF[1].map(adp_dict)
|
113 |
-
comb_DF['ADP_3'] = comb_DF[2].map(adp_dict)
|
114 |
-
|
115 |
-
comb_DF['Value'] = comb_DF.apply(lambda row: pd.Series([diff_dict.get(row[i], None) for i in range(3)]).mean(), axis=1)
|
116 |
-
|
117 |
-
elif stack_size == 4:
|
118 |
-
comb_DF['Team'] = comb_DF[0].map(team_dict)
|
119 |
-
|
120 |
-
comb_DF['Proj'] = comb_DF.apply(lambda row: pd.Series([proj_dict.get(row[i], None) for i in range(4)]).sum(), axis=1)
|
121 |
-
|
122 |
-
comb_DF['ADP_1'] = comb_DF[0].map(adp_dict)
|
123 |
-
comb_DF['ADP_2'] = comb_DF[1].map(adp_dict)
|
124 |
-
comb_DF['ADP_3'] = comb_DF[2].map(adp_dict)
|
125 |
-
comb_DF['ADP_4'] = comb_DF[3].map(adp_dict)
|
126 |
-
|
127 |
-
comb_DF['Value'] = comb_DF.apply(lambda row: pd.Series([diff_dict.get(row[i], None) for i in range(4)]).mean(), axis=1)
|
128 |
-
|
129 |
-
elif stack_size == 5:
|
130 |
-
comb_DF['Team'] = comb_DF[0].map(team_dict)
|
131 |
-
|
132 |
-
comb_DF['Proj'] = comb_DF.apply(lambda row: pd.Series([proj_dict.get(row[i], None) for i in range(5)]).sum(), axis=1)
|
133 |
-
|
134 |
-
comb_DF['ADP_1'] = comb_DF[0].map(adp_dict)
|
135 |
-
comb_DF['ADP_2'] = comb_DF[1].map(adp_dict)
|
136 |
-
comb_DF['ADP_3'] = comb_DF[2].map(adp_dict)
|
137 |
-
comb_DF['ADP_4'] = comb_DF[3].map(adp_dict)
|
138 |
-
comb_DF['ADP_5'] = comb_DF[4].map(adp_dict)
|
139 |
-
|
140 |
-
comb_DF['Value'] = comb_DF.apply(lambda row: pd.Series([diff_dict.get(row[i], None) for i in range(5)]).mean(), axis=1)
|
141 |
|
142 |
-
|
143 |
-
|
144 |
-
|
145 |
-
|
146 |
-
|
147 |
-
|
148 |
-
|
149 |
-
|
150 |
-
|
151 |
-
comb_DF['ADP_5'] = comb_DF[4].map(adp_dict)
|
152 |
-
comb_DF['ADP_6'] = comb_DF[5].map(adp_dict)
|
153 |
|
154 |
-
|
155 |
-
|
156 |
-
comb_DF = comb_DF.sort_values(by='Proj', ascending=False)
|
157 |
-
|
158 |
-
cut_var = 0
|
159 |
-
|
160 |
-
if stack_size == 3:
|
161 |
-
while cut_var <= int(len(comb_DF)):
|
162 |
-
try:
|
163 |
-
if int(cut_var) == 0:
|
164 |
-
cur_proj = float(comb_DF.iat[cut_var,4])
|
165 |
-
cur_own = 0
|
166 |
-
elif int(cut_var) >= 1:
|
167 |
-
check_own = float(comb_DF.iat[cut_var,8])
|
168 |
-
if check_own < cur_own:
|
169 |
-
comb_DF = comb_DF.drop([cut_var])
|
170 |
-
cur_own = cur_own
|
171 |
-
cut_var = cut_var - 1
|
172 |
-
comb_DF = comb_DF.reset_index()
|
173 |
-
comb_DF = comb_DF.drop(['index'], axis=1)
|
174 |
-
elif check_own >= cur_own:
|
175 |
-
cur_own = float(comb_DF.iat[cut_var,8])
|
176 |
-
cut_var = cut_var
|
177 |
-
cut_var += 1
|
178 |
-
except:
|
179 |
-
cut_var += 1
|
180 |
-
|
181 |
-
elif stack_size == 4:
|
182 |
-
while cut_var <= int(len(comb_DF)):
|
183 |
-
try:
|
184 |
-
if int(cut_var) == 0:
|
185 |
-
cur_proj = float(comb_DF.iat[cut_var,5])
|
186 |
-
cur_own = 0
|
187 |
-
elif int(cut_var) >= 1:
|
188 |
-
check_own = float(comb_DF.iat[cut_var,10])
|
189 |
-
if check_own < cur_own:
|
190 |
-
comb_DF = comb_DF.drop([cut_var])
|
191 |
-
cur_own = cur_own
|
192 |
-
cut_var = cut_var - 1
|
193 |
-
comb_DF = comb_DF.reset_index()
|
194 |
-
comb_DF = comb_DF.drop(['index'], axis=1)
|
195 |
-
elif check_own >= cur_own:
|
196 |
-
cur_own = float(comb_DF.iat[cut_var,10])
|
197 |
-
cut_var = cut_var
|
198 |
-
cut_var += 1
|
199 |
-
except:
|
200 |
-
cut_var += 1
|
201 |
-
elif stack_size == 5:
|
202 |
-
while cut_var <= int(len(comb_DF)):
|
203 |
-
try:
|
204 |
-
if int(cut_var) == 0:
|
205 |
-
cur_proj = float(comb_DF.iat[cut_var,6])
|
206 |
-
cur_own = 0
|
207 |
-
elif int(cut_var) >= 1:
|
208 |
-
check_own = float(comb_DF.iat[cut_var,12])
|
209 |
-
if check_own < cur_own:
|
210 |
-
comb_DF = comb_DF.drop([cut_var])
|
211 |
-
cur_own = cur_own
|
212 |
-
cut_var = cut_var - 1
|
213 |
-
comb_DF = comb_DF.reset_index()
|
214 |
-
comb_DF = comb_DF.drop(['index'], axis=1)
|
215 |
-
elif check_own >= cur_own:
|
216 |
-
cur_own = float(comb_DF.iat[cut_var,12])
|
217 |
-
cut_var = cut_var
|
218 |
-
cut_var += 1
|
219 |
-
except:
|
220 |
-
cut_var += 1
|
221 |
-
elif stack_size == 6:
|
222 |
-
while cut_var <= int(len(comb_DF)):
|
223 |
-
try:
|
224 |
-
if int(cut_var) == 0:
|
225 |
-
cur_proj = float(comb_DF.iat[cut_var,7])
|
226 |
-
cur_own = 0
|
227 |
-
elif int(cut_var) >= 1:
|
228 |
-
check_own = float(comb_DF.iat[cut_var,14])
|
229 |
-
if check_own < cur_own:
|
230 |
-
comb_DF = comb_DF.drop([cut_var])
|
231 |
-
cur_own = cur_own
|
232 |
-
cut_var = cut_var - 1
|
233 |
-
comb_DF = comb_DF.reset_index()
|
234 |
-
comb_DF = comb_DF.drop(['index'], axis=1)
|
235 |
-
elif check_own >= cur_own:
|
236 |
-
cur_own = float(comb_DF.iat[cut_var,14])
|
237 |
-
cut_var = cut_var
|
238 |
-
cut_var += 1
|
239 |
-
except:
|
240 |
-
cut_var += 1
|
241 |
-
|
242 |
with stack_hold_container:
|
243 |
stack_hold_container = st.empty()
|
244 |
-
st.dataframe(
|
245 |
st.download_button(
|
246 |
label="Export Tables",
|
247 |
-
data=convert_df_to_csv(
|
248 |
file_name='NFL_Stack_Options_export.csv',
|
249 |
mime='text/csv',
|
250 |
-
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
47 |
|
48 |
adp_table, stacks_table, proj_table = init_baselines()
|
49 |
|
50 |
+
tab1, tab2, tab3, tab4 = st.tabs(["ADPs and Ranks", "Team Projections", 'Player Projections', "Stack Finder"])
|
51 |
|
52 |
def convert_df_to_csv(df):
|
53 |
return df.to_csv().encode('utf-8')
|
54 |
|
55 |
+
with tab1:
|
56 |
+
col1, col2 = st.columns([1, 5])
|
57 |
+
|
58 |
+
with col1:
|
59 |
+
if st.button("Load/Reset Data", key='reset1'):
|
60 |
+
st.cache_data.clear()
|
61 |
+
adp_table, stacks_table, proj_table = init_baselines()
|
62 |
+
site_var1 = st.radio("What site are you playing?", ('Underdog', 'MFL10'), key='site_var1')
|
63 |
+
split_var1 = st.radio("Would you like to run stack analysis for the full slate or individual teams?", ('All Teams', 'Specific Teams'), key='split_var1')
|
64 |
+
if split_var1 == 'Specific Teams':
|
65 |
+
team_var1 = st.multiselect('Which teams would you like to include in the analysis?', options = adp_table['Team'].unique(), key='team_var1')
|
66 |
+
elif split_var1 == 'All Teams':
|
67 |
+
team_var1 = adp_table.Team.unique().tolist()
|
68 |
+
pos_split1 = st.radio("Are you viewing all positions, specific groups, or specific positions?", ('All Positions', 'Specific Positions'), key='pos_split1')
|
69 |
+
if pos_split1 == 'Specific Positions':
|
70 |
+
pos_var1 = st.multiselect('What Positions would you like to view?', options = ['QB', 'RB', 'WR', 'TE'])
|
71 |
+
elif pos_split1 == 'All Positions':
|
72 |
+
pos_var1 = adp_table.Position.unique().tolist()
|
73 |
+
|
74 |
+
with col2:
|
75 |
+
stack_hold_container = st.empty()
|
76 |
+
working_baselines = adp_table.copy()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
77 |
|
78 |
+
if pos_split1 == 'All Positions':
|
79 |
+
raw_baselines = working_baselines
|
80 |
+
elif pos_split1 != 'All Positions':
|
81 |
+
raw_baselines = working_baselines[working_baselines['Position'].str.contains('|'.join(pos_var1))]
|
82 |
+
|
83 |
+
if split_var1 == 'All Teams':
|
84 |
+
raw_baselines = raw_baselines
|
85 |
+
elif split_var1 != 'All Teams':
|
86 |
+
raw_baselines = raw_baselines[raw_baselines['Team'].str.contains('|'.join(team_var1))]
|
|
|
|
|
87 |
|
88 |
+
display_frame = raw_baselines.copy()
|
89 |
+
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
90 |
with stack_hold_container:
|
91 |
stack_hold_container = st.empty()
|
92 |
+
st.dataframe(display_frame.style.background_gradient(axis=0).background_gradient(cmap='RdYlGn').format(precision=2), use_container_width = True)
|
93 |
st.download_button(
|
94 |
label="Export Tables",
|
95 |
+
data=convert_df_to_csv(display_frame),
|
96 |
file_name='NFL_Stack_Options_export.csv',
|
97 |
mime='text/csv',
|
98 |
+
)
|
99 |
+
with tab2:
|
100 |
+
st.write('working on it')
|
101 |
+
with tab3:
|
102 |
+
st.write('working on it')
|
103 |
+
with tab4:
|
104 |
+
col1, col2 = st.columns([1, 5])
|
105 |
+
|
106 |
+
with col1:
|
107 |
+
if st.button("Load/Reset Data", key='reset4'):
|
108 |
+
st.cache_data.clear()
|
109 |
+
adp_table, stacks_table, proj_table = init_baselines()
|
110 |
+
site_var4 = st.radio("What site are you playing?", ('Underdog', 'MFL10'), key='site_var2')
|
111 |
+
split_var4 = st.radio("Would you like to run stack analysis for the full slate or individual teams?", ('All Teams', 'Specific Teams'), key='split_var4')
|
112 |
+
if split_var4 == 'Specific Teams':
|
113 |
+
team_var4 = st.multiselect('Which teams would you like to include in the analysis?', options = adp_table['Team'].unique(), key='team_var4')
|
114 |
+
elif split_var4 == 'All Teams':
|
115 |
+
team_var4 = adp_table.Team.unique().tolist()
|
116 |
+
pos_split4 = st.radio("Are you viewing all positions, specific groups, or specific positions?", ('All Positions', 'Specific Positions'), key='pos_split4')
|
117 |
+
if pos_split4 == 'Specific Positions':
|
118 |
+
pos_var4 = st.multiselect('What Positions would you like to view?', options = ['QB', 'RB', 'WR', 'TE'], key='pos_var4')
|
119 |
+
elif pos_split4 == 'All Positions':
|
120 |
+
pos_var4 = adp_table.Position.unique().tolist()
|
121 |
+
if site_var4 == 'Underdog':
|
122 |
+
adp_dict = dict(zip(adp_table.Player, adp_table.Underdog))
|
123 |
+
elif site_var4 == 'MFL10':
|
124 |
+
adp_dict = dict(zip(adp_table.Player, adp_table.MFL10))
|
125 |
+
size_var4 = st.number_input('What size of stacks are you analyzing?', min_value = 3, max_value = 6, step=1)
|
126 |
+
stack_size = size_var4
|
127 |
+
cut_var4 = st.radio("Do you want to remove stacks with a negative average value?", ('Yes', 'No'), key='cut_var4')
|
128 |
+
if cut_var4 == "Yes":
|
129 |
+
cut_sequence = 1
|
130 |
+
elif cut_var4 == "No":
|
131 |
+
cut_sequence = 0
|
132 |
+
|
133 |
+
team_dict = dict(zip(adp_table.Player, adp_table.Team))
|
134 |
+
proj_dict = dict(zip(adp_table.Player, adp_table.Projection))
|
135 |
+
diff_dict = dict(zip(adp_table.Player, adp_table.Diff))
|
136 |
+
|
137 |
+
with col2:
|
138 |
+
stack_hold_container = st.empty()
|
139 |
+
if st.button('Run stack analysis'):
|
140 |
+
comb_list = []
|
141 |
+
if pos_split4 == 'All Positions':
|
142 |
+
raw_baselines = adp_table.copy()
|
143 |
+
elif pos_split4 != 'All Positions':
|
144 |
+
raw_baselines = adp_table[adp_table['Position'].str.contains('|'.join(pos_var4))]
|
145 |
+
|
146 |
+
for cur_team in team_var4:
|
147 |
+
working_baselines = raw_baselines.copy()
|
148 |
+
working_baselines = working_baselines[working_baselines['Team'] == cur_team]
|
149 |
+
order_list = working_baselines['Player']
|
150 |
+
|
151 |
+
comb = combinations(order_list, stack_size)
|
152 |
+
|
153 |
+
for i in list(comb):
|
154 |
+
comb_list.append(i)
|
155 |
+
|
156 |
+
comb_DF = pd.DataFrame(comb_list)
|
157 |
+
|
158 |
+
if stack_size == 3:
|
159 |
+
comb_DF['Team'] = comb_DF[0].map(team_dict)
|
160 |
+
|
161 |
+
comb_DF['Proj'] = comb_DF.apply(lambda row: pd.Series([proj_dict.get(row[i], None) for i in range(3)]).sum(), axis=1)
|
162 |
+
|
163 |
+
comb_DF['ADP_1'] = comb_DF[0].map(adp_dict)
|
164 |
+
comb_DF['ADP_2'] = comb_DF[1].map(adp_dict)
|
165 |
+
comb_DF['ADP_3'] = comb_DF[2].map(adp_dict)
|
166 |
+
|
167 |
+
comb_DF['Value'] = comb_DF.apply(lambda row: pd.Series([diff_dict.get(row[i], None) for i in range(3)]).mean(), axis=1)
|
168 |
+
|
169 |
+
elif stack_size == 4:
|
170 |
+
comb_DF['Team'] = comb_DF[0].map(team_dict)
|
171 |
+
|
172 |
+
comb_DF['Proj'] = comb_DF.apply(lambda row: pd.Series([proj_dict.get(row[i], None) for i in range(4)]).sum(), axis=1)
|
173 |
+
|
174 |
+
comb_DF['ADP_1'] = comb_DF[0].map(adp_dict)
|
175 |
+
comb_DF['ADP_2'] = comb_DF[1].map(adp_dict)
|
176 |
+
comb_DF['ADP_3'] = comb_DF[2].map(adp_dict)
|
177 |
+
comb_DF['ADP_4'] = comb_DF[3].map(adp_dict)
|
178 |
+
|
179 |
+
comb_DF['Value'] = comb_DF.apply(lambda row: pd.Series([diff_dict.get(row[i], None) for i in range(4)]).mean(), axis=1)
|
180 |
+
|
181 |
+
elif stack_size == 5:
|
182 |
+
comb_DF['Team'] = comb_DF[0].map(team_dict)
|
183 |
+
|
184 |
+
comb_DF['Proj'] = comb_DF.apply(lambda row: pd.Series([proj_dict.get(row[i], None) for i in range(5)]).sum(), axis=1)
|
185 |
+
|
186 |
+
comb_DF['ADP_1'] = comb_DF[0].map(adp_dict)
|
187 |
+
comb_DF['ADP_2'] = comb_DF[1].map(adp_dict)
|
188 |
+
comb_DF['ADP_3'] = comb_DF[2].map(adp_dict)
|
189 |
+
comb_DF['ADP_4'] = comb_DF[3].map(adp_dict)
|
190 |
+
comb_DF['ADP_5'] = comb_DF[4].map(adp_dict)
|
191 |
+
|
192 |
+
comb_DF['Value'] = comb_DF.apply(lambda row: pd.Series([diff_dict.get(row[i], None) for i in range(5)]).mean(), axis=1)
|
193 |
+
|
194 |
+
elif stack_size == 6:
|
195 |
+
comb_DF['Team'] = comb_DF[0].map(team_dict)
|
196 |
+
|
197 |
+
comb_DF['Proj'] = comb_DF.apply(lambda row: pd.Series([proj_dict.get(row[i], None) for i in range(6)]).sum(), axis=1)
|
198 |
+
|
199 |
+
comb_DF['ADP_1'] = comb_DF[0].map(adp_dict)
|
200 |
+
comb_DF['ADP_2'] = comb_DF[1].map(adp_dict)
|
201 |
+
comb_DF['ADP_3'] = comb_DF[2].map(adp_dict)
|
202 |
+
comb_DF['ADP_4'] = comb_DF[3].map(adp_dict)
|
203 |
+
comb_DF['ADP_5'] = comb_DF[4].map(adp_dict)
|
204 |
+
comb_DF['ADP_6'] = comb_DF[5].map(adp_dict)
|
205 |
+
|
206 |
+
comb_DF['Value'] = comb_DF.apply(lambda row: pd.Series([diff_dict.get(row[i], None) for i in range(6)]).mean(), axis=1)
|
207 |
+
|
208 |
+
comb_DF = comb_DF.sort_values(by='Proj', ascending=False)
|
209 |
+
|
210 |
+
if cut_sequence == 1:
|
211 |
+
cut_var = 0
|
212 |
+
|
213 |
+
if stack_size == 3:
|
214 |
+
while cut_var <= int(len(comb_DF)):
|
215 |
+
try:
|
216 |
+
if int(cut_var) == 0:
|
217 |
+
cur_proj = float(comb_DF.iat[cut_var,4])
|
218 |
+
cur_own = 0
|
219 |
+
elif int(cut_var) >= 1:
|
220 |
+
check_own = float(comb_DF.iat[cut_var,8])
|
221 |
+
if check_own < cur_own:
|
222 |
+
comb_DF = comb_DF.drop([cut_var])
|
223 |
+
cur_own = cur_own
|
224 |
+
cut_var = cut_var - 1
|
225 |
+
comb_DF = comb_DF.reset_index()
|
226 |
+
comb_DF = comb_DF.drop(['index'], axis=1)
|
227 |
+
elif check_own >= cur_own:
|
228 |
+
cur_own = float(comb_DF.iat[cut_var,8])
|
229 |
+
cut_var = cut_var
|
230 |
+
cut_var += 1
|
231 |
+
except:
|
232 |
+
cut_var += 1
|
233 |
+
|
234 |
+
elif stack_size == 4:
|
235 |
+
while cut_var <= int(len(comb_DF)):
|
236 |
+
try:
|
237 |
+
if int(cut_var) == 0:
|
238 |
+
cur_proj = float(comb_DF.iat[cut_var,5])
|
239 |
+
cur_own = 0
|
240 |
+
elif int(cut_var) >= 1:
|
241 |
+
check_own = float(comb_DF.iat[cut_var,10])
|
242 |
+
if check_own < cur_own:
|
243 |
+
comb_DF = comb_DF.drop([cut_var])
|
244 |
+
cur_own = cur_own
|
245 |
+
cut_var = cut_var - 1
|
246 |
+
comb_DF = comb_DF.reset_index()
|
247 |
+
comb_DF = comb_DF.drop(['index'], axis=1)
|
248 |
+
elif check_own >= cur_own:
|
249 |
+
cur_own = float(comb_DF.iat[cut_var,10])
|
250 |
+
cut_var = cut_var
|
251 |
+
cut_var += 1
|
252 |
+
except:
|
253 |
+
cut_var += 1
|
254 |
+
elif stack_size == 5:
|
255 |
+
while cut_var <= int(len(comb_DF)):
|
256 |
+
try:
|
257 |
+
if int(cut_var) == 0:
|
258 |
+
cur_proj = float(comb_DF.iat[cut_var,6])
|
259 |
+
cur_own = 0
|
260 |
+
elif int(cut_var) >= 1:
|
261 |
+
check_own = float(comb_DF.iat[cut_var,12])
|
262 |
+
if check_own < cur_own:
|
263 |
+
comb_DF = comb_DF.drop([cut_var])
|
264 |
+
cur_own = cur_own
|
265 |
+
cut_var = cut_var - 1
|
266 |
+
comb_DF = comb_DF.reset_index()
|
267 |
+
comb_DF = comb_DF.drop(['index'], axis=1)
|
268 |
+
elif check_own >= cur_own:
|
269 |
+
cur_own = float(comb_DF.iat[cut_var,12])
|
270 |
+
cut_var = cut_var
|
271 |
+
cut_var += 1
|
272 |
+
except:
|
273 |
+
cut_var += 1
|
274 |
+
elif stack_size == 6:
|
275 |
+
while cut_var <= int(len(comb_DF)):
|
276 |
+
try:
|
277 |
+
if int(cut_var) == 0:
|
278 |
+
cur_proj = float(comb_DF.iat[cut_var,7])
|
279 |
+
cur_own = 0
|
280 |
+
elif int(cut_var) >= 1:
|
281 |
+
check_own = float(comb_DF.iat[cut_var,14])
|
282 |
+
if check_own < cur_own:
|
283 |
+
comb_DF = comb_DF.drop([cut_var])
|
284 |
+
cur_own = cur_own
|
285 |
+
cut_var = cut_var - 1
|
286 |
+
comb_DF = comb_DF.reset_index()
|
287 |
+
comb_DF = comb_DF.drop(['index'], axis=1)
|
288 |
+
elif check_own >= cur_own:
|
289 |
+
cur_own = float(comb_DF.iat[cut_var,14])
|
290 |
+
cut_var = cut_var
|
291 |
+
cut_var += 1
|
292 |
+
except:
|
293 |
+
cut_var += 1
|
294 |
+
|
295 |
+
with stack_hold_container:
|
296 |
+
stack_hold_container = st.empty()
|
297 |
+
st.dataframe(comb_DF.style.background_gradient(axis=0).background_gradient(cmap='RdYlGn').format(precision=2), use_container_width = True)
|
298 |
+
st.download_button(
|
299 |
+
label="Export Tables",
|
300 |
+
data=convert_df_to_csv(comb_DF),
|
301 |
+
file_name='NFL_Stack_Options_export.csv',
|
302 |
+
mime='text/csv',
|
303 |
+
)
|