Spaces:
Sleeping
Sleeping
Murali2003
commited on
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,92 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from transformers import FSMTForConditionalGeneration, FSMTTokenizer
|
2 |
+
from transformers import AutoModelForSequenceClassification
|
3 |
+
from lxml_html_clean import Cleaner
|
4 |
+
|
5 |
+
|
6 |
+
from transformers import AutoTokenizer
|
7 |
+
from langdetect import detect
|
8 |
+
from newspaper import Article
|
9 |
+
from PIL import Image
|
10 |
+
import streamlit as st
|
11 |
+
|
12 |
+
import requests
|
13 |
+
import torch
|
14 |
+
|
15 |
+
st.markdown("## Prediction of Misinformation by given URL")
|
16 |
+
background = Image.open('logo.jpg')
|
17 |
+
st.image(background)
|
18 |
+
|
19 |
+
st.markdown(f"### Article URL")
|
20 |
+
text = st.text_area("Insert some url here",
|
21 |
+
value="https://www.livelaw.in/news-updates/supreme-court-collegium-recommends-appointment-advocate-praveen-kumar-giri-judge-allahabad-high-court-279470")
|
22 |
+
|
23 |
+
# @st.cache(allow_output_mutation=True)
|
24 |
+
# def get_models_and_tokenizers():
|
25 |
+
# model_name = 'distilbert-base-uncased-finetuned-sst-2-english'
|
26 |
+
# model = AutoModelForSequenceClassification.from_pretrained(model_name, num_labels=2)
|
27 |
+
# model.eval()
|
28 |
+
# tokenizer = AutoTokenizer.from_pretrained(model_name)
|
29 |
+
# model.load_state_dict(torch.load('./my_saved_model/checkpoint-6320/rng_state.pth', map_location='cpu'))
|
30 |
+
|
31 |
+
# model_name_translator = "facebook/wmt19-ru-en"
|
32 |
+
# tokenizer_translator = FSMTTokenizer.from_pretrained(model_name_translator)
|
33 |
+
# model_translator = FSMTForConditionalGeneration.from_pretrained(model_name_translator)
|
34 |
+
# model_translator.eval()
|
35 |
+
# return model, tokenizer, model_translator, tokenizer_translator
|
36 |
+
@st.cache_data()
|
37 |
+
def get_models_and_tokenizers():
|
38 |
+
model_name = 'distilbert-base-uncased-finetuned-sst-2-english'
|
39 |
+
checkpoint_dir = './my_saved_model/checkpoint-6320/' # Path to your checkpoint folder
|
40 |
+
|
41 |
+
# Load the classification model and tokenizer
|
42 |
+
model = AutoModelForSequenceClassification.from_pretrained(checkpoint_dir, num_labels=2)
|
43 |
+
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
44 |
+
|
45 |
+
# Load the translator model and tokenizer
|
46 |
+
model_name_translator = "facebook/wmt19-ru-en"
|
47 |
+
tokenizer_translator = FSMTTokenizer.from_pretrained(model_name_translator)
|
48 |
+
model_translator = FSMTForConditionalGeneration.from_pretrained(model_name_translator)
|
49 |
+
|
50 |
+
model.eval()
|
51 |
+
model_translator.eval()
|
52 |
+
return model, tokenizer, model_translator, tokenizer_translator
|
53 |
+
|
54 |
+
model, tokenizer, model_translator, tokenizer_translator = get_models_and_tokenizers()
|
55 |
+
|
56 |
+
article = Article(text)
|
57 |
+
article.download()
|
58 |
+
article.parse()
|
59 |
+
concated_text = article.title + '. ' + article.text
|
60 |
+
lang = detect(concated_text)
|
61 |
+
|
62 |
+
st.markdown(f"### Language detection")
|
63 |
+
|
64 |
+
if lang == 'ru':
|
65 |
+
st.markdown(f"The language of this article is {lang.upper()} so we translated it!")
|
66 |
+
with st.spinner('Waiting for translation'):
|
67 |
+
input_ids = tokenizer_translator.encode(concated_text,
|
68 |
+
return_tensors="pt", max_length=512, truncation=True)
|
69 |
+
outputs = model_translator.generate(input_ids)
|
70 |
+
decoded = tokenizer_translator.decode(outputs[0], skip_special_tokens=True)
|
71 |
+
st.markdown("### Translated Text")
|
72 |
+
st.markdown(f"{decoded[:777]}")
|
73 |
+
concated_text = decoded
|
74 |
+
else:
|
75 |
+
st.markdown(f"The language of this article for sure: {lang.upper()}!")
|
76 |
+
|
77 |
+
st.markdown("### Extracted Text")
|
78 |
+
st.markdown(f"{concated_text[:777]}")
|
79 |
+
|
80 |
+
tokens_info = tokenizer(concated_text, truncation=True, return_tensors="pt")
|
81 |
+
with torch.no_grad():
|
82 |
+
raw_predictions = model(**tokens_info)
|
83 |
+
softmaxed = int(torch.nn.functional.softmax(raw_predictions.logits[0], dim=0)[1] * 100)
|
84 |
+
st.markdown("### Truthteller Predicts..")
|
85 |
+
st.progress(softmaxed)
|
86 |
+
st.markdown(f"This is fake by *{softmaxed}%*!")
|
87 |
+
if (softmaxed > 70):
|
88 |
+
st.error('We would not trust this text! This is misleading..')
|
89 |
+
elif (softmaxed > 40):
|
90 |
+
st.warning('We are not sure about this text!')
|
91 |
+
else:
|
92 |
+
st.success('We would trust this text!')
|