import gradio as gr from fastai.vision.all import * import skimage #installed the fastai from fastai import * from fastai.vision import * #from fastbook import * learn = load_learner('export.pkl') labels = learn.dls.vocab def predict(img): img = PILImage.create(img) pred,pred_idx,probs = learn.predict(img) return {labels[i]: float(probs[i]) for i in range(len(labels))} title = "CLASMA" description = "App for classifying disease in cereal crops(maize & beans) leaves." article = "sample image" examples = ['corn.jpg'] interpretation = 'default' enable_queue = True gr.Interface(fn = predict, inputs = gr.inputs.Image(shape = (512, 512)), outputs = gr.outputs.Label(num_top_classes = 8), title = title, description = description, article = article, examples = examples, interpretation = interpretation, enable_queue = enable_queue).launch()