Spaces:
Runtime error
Runtime error
File size: 11,037 Bytes
d52cca8 4a192fa d52cca8 52b9829 d52cca8 207595d d52cca8 52b9829 7658f31 52b9829 d52cca8 d81c33f 9cb1844 d52cca8 52b9829 b908a63 52b9829 b908a63 52b9829 b908a63 52b9829 ebf26c7 207595d 6da4da3 ebf26c7 d52cca8 4a192fa 88685eb 1e6bb68 4a192fa b544630 4a192fa ebf26c7 d52cca8 4a192fa d52cca8 4a192fa 88685eb f8cf0b4 f2893a3 f8cf0b4 4a192fa f8cf0b4 4a192fa ebf26c7 d52cca8 2db09e8 efb7284 2db09e8 7a16e1c b1bc16b 70d484a 88685eb 70d484a f2893a3 70d484a 044757b 52c1b59 68f9e41 52b9829 68f9e41 52b9829 68f9e41 d52cca8 f2893a3 d52cca8 52b9829 d52cca8 52b9829 d52cca8 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 |
from ragatouille import RAGPretrainedModel
import subprocess
import json
import firebase_admin
from firebase_admin import credentials, firestore
import logging
from pathlib import Path
from time import perf_counter
from datetime import datetime
import gradio as gr
from jinja2 import Environment, FileSystemLoader
import numpy as np
from sentence_transformers import CrossEncoder
from backend.query_llm import generate_hf, generate_openai
from backend.semantic_search import table, retriever
VECTOR_COLUMN_NAME = "vector"
TEXT_COLUMN_NAME = "text"
proj_dir = Path(__file__).parent
# Setting up the logging
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)
# Set up the template environment with the templates directory
env = Environment(loader=FileSystemLoader(proj_dir / 'templates'))
# Load the templates directly from the environment
template = env.get_template('template.j2')
template_html = env.get_template('template_html.j2')
service_account_key='firebase.json'
# Create a Certificate object from the service account info
cred = credentials.Certificate(service_account_key)
# Initialize the Firebase Admin
firebase_admin.initialize_app(cred)
# # Create a reference to the Firestore database
db = firestore.client()
# Examples
examples = ['when i have to report to constituency?','what is social media and what are rules related to it for expenditure monitoring ',
'how many reports to be submitted by Expenditure observer with annexure names ?','what is expenditure limits for parlimentary constituency and assembly constituency'
]
#db usage
collection_name = 'Nirvachana' # Replace with your collection name
field_name = 'message_count' # Replace with your field name for count
def get_and_increment_value_count(db , collection_name, field_name):
"""
Retrieves a value count from the specified Firestore collection and field,
increments it by 1, and updates the field with the new value."""
collection_ref = db.collection(collection_name)
doc_ref = collection_ref.document('count_doc') # Assuming a dedicated document for count
# Use a transaction to ensure consistency across reads and writes
try:
with db.transaction() as transaction:
# Get the current value count (or initialize to 0 if it doesn't exist)
current_count_doc = doc_ref.get()
current_count_data = current_count_doc.to_dict()
if current_count_data:
current_count = current_count_data.get(field_name, 0)
else:
current_count = 0
# Increment the count
new_count = current_count + 1
# Update the document with the new count
transaction.set(doc_ref, {field_name: new_count})
return new_count
except Exception as e:
print(f"Error retrieving and updating value count: {e}")
return None # Indicate error
def update_count_html():
usage_count = get_and_increment_value_count(db ,collection_name, field_name)
ccount_html = gr.HTML(value=f"""
<div style="display: flex; justify-content: flex-end;">
<span style="font-weight: bold; color: maroon; font-size: 18px;">No of Usages:</span>
<span style="font-weight: bold; color: maroon; font-size: 18px;">{usage_count}</span>
</div>
""")
return count_html
def store_message(db,query,answer,cross_encoder):
timestamp = datetime.now().strftime("%Y-%m-%d_%H-%M-%S")
# Create a new document reference with a dynamic document name based on timestamp
new_completion= db.collection('Nirvachana').document(f"chatlogs_{timestamp}")
new_completion.set({
'query': query,
'answer':answer,
'created_time': firestore.SERVER_TIMESTAMP,
'embedding': cross_encoder,
'title': 'Expenditure observer bot'
})
def add_text(history, text):
history = [] if history is None else history
history = history + [(text, None)]
return history, gr.Textbox(value="", interactive=False)
def bot(history, cross_encoder):
top_rerank = 15
top_k_rank = 10
query = history[-1][0]
if not query:
gr.Warning("Please submit a non-empty string as a prompt")
raise ValueError("Empty string was submitted")
logger.warning('Retrieving documents...')
# if COLBERT RAGATATOUILLE PROCEDURE :
if cross_encoder=='(HIGH ACCURATE) ColBERT':
gr.Warning('Retrieving using ColBERT.. First time query will take a minute for model to load..pls wait')
RAG= RAGPretrainedModel.from_pretrained("colbert-ir/colbertv2.0")
RAG_db=RAG.from_index('.ragatouille/colbert/indexes/mockingbird')
documents_full=RAG_db.search(query,k=top_k_rank)
documents=[item['content'] for item in documents_full]
# Create Prompt
prompt = template.render(documents=documents, query=query)
prompt_html = template_html.render(documents=documents, query=query)
generate_fn = generate_hf
history[-1][1] = ""
for character in generate_fn(prompt, history[:-1]):
history[-1][1] = character
print('Final history is ',history)
yield history, prompt_html
store_message(db,history[-1][0],history[-1][1],cross_encoder)
else:
# Retrieve documents relevant to query
document_start = perf_counter()
query_vec = retriever.encode(query)
logger.warning(f'Finished query vec')
doc1 = table.search(query_vec, vector_column_name=VECTOR_COLUMN_NAME).limit(top_k_rank)
logger.warning(f'Finished search')
documents = table.search(query_vec, vector_column_name=VECTOR_COLUMN_NAME).limit(top_rerank).to_list()
documents = [doc[TEXT_COLUMN_NAME] for doc in documents]
logger.warning(f'start cross encoder {len(documents)}')
# Retrieve documents relevant to query
query_doc_pair = [[query, doc] for doc in documents]
if cross_encoder=='(FAST) MiniLM-L6v2' :
cross_encoder1 = CrossEncoder('cross-encoder/ms-marco-MiniLM-L-6-v2')
elif cross_encoder=='(FAIRLY ACCURATE) BGE reranker':
cross_encoder1 = CrossEncoder('BAAI/bge-reranker-base')
cross_scores = cross_encoder1.predict(query_doc_pair)
sim_scores_argsort = list(reversed(np.argsort(cross_scores)))
logger.warning(f'Finished cross encoder {len(documents)}')
documents = [documents[idx] for idx in sim_scores_argsort[:top_k_rank]]
logger.warning(f'num documents {len(documents)}')
document_time = perf_counter() - document_start
logger.warning(f'Finished Retrieving documents in {round(document_time, 2)} seconds...')
# Create Prompt
prompt = template.render(documents=documents, query=query)
prompt_html = template_html.render(documents=documents, query=query)
generate_fn = generate_hf
history[-1][1] = ""
for character in generate_fn(prompt, history[:-1]):
history[-1][1] = character
print('Final history is ',history)
yield history, prompt_html
store_message(db,history[-1][0],history[-1][1],cross_encoder)
with gr.Blocks(theme='Insuz/SimpleIndigo') as demo:
gr.HTML(value="""<div style="display: flex; align-items: center; justify-content: space-between;">
<h1 style="color: #008000">NIRVACHANA - <span style="color: #008000">Expenditure Observer AI Assistant</span></h1>
<img src='logo.png' alt="Chatbot" width="50" height="50" />
</div>""",elem_id='heading')
gr.HTML(value=f"""
<p style="font-family: sans-serif; font-size: 16px;">
A free chat bot assistant for Expenditure Observers on Compendium on Election Expenditure Monitoring using Open source LLMs. <br>
The bot can answer questions in natural language, taking relevant extracts from the ECI document which can be accessed <a href="https://www.eci.gov.in/eci-backend/public/api/download?url=LMAhAK6sOPBp%2FNFF0iRfXbEB1EVSLT41NNLRjYNJJP1KivrUxbfqkDatmHy12e%2Fzk1vx4ptJpQsKYHA87guoLjnPUWtHeZgKtEqs%2FyzfTTYIC0newOHHOjl1rl0u3mJBSIq%2Fi7zDsrcP74v%2FKr8UNw%3D%3D" style="color: #00008B; text-decoration: none;">CLICK HERE !</a>.
</p>
<p style="font-family: sans-serif; font-size: 14px; color: #808080;">
Disclaimer: This is an independent initiative and AI responses are guidance in nature. It is advised to reconfirm with the latest ECI circulars/instructions.
</p>
""", elem_id='Sub-heading')
usage_count = get_and_increment_value_count(db,collection_name, field_name)
gr.HTML(value=f"""<p style="font-family: Arial, sans-serif; font-size: 16px;">Developed by Ramesh M IRS (C& CE) (R-19187), Suggestions may be sent to <a href="mailto:[email protected]" style="color: #00008B; font-style: italic;">[email protected]</a>.</p>""", elem_id='Sub-heading1 ')
count_html = gr.HTML(value=f"""
<div style="display: flex; justify-content: flex-end;">
<span style="font-weight: bold; color: maroon; font-size: 18px;">No of Usages:</span>
<span style="font-weight: bold; color: maroon; font-size: 18px;">{usage_count}</span>
</div>
""")
chatbot = gr.Chatbot(
[],
elem_id="chatbot",
avatar_images=('https://aui.atlassian.com/aui/8.8/docs/images/avatar-person.svg',
'https://huggingface.co/datasets/huggingface/brand-assets/resolve/main/hf-logo.svg'),
bubble_full_width=False,
show_copy_button=True,
show_share_button=True,
)
with gr.Row():
txt = gr.Textbox(
scale=3,
show_label=False,
placeholder="Enter text and press enter",
container=False,
)
txt_btn = gr.Button(value="Submit text", scale=1)
cross_encoder = gr.Radio(choices=['(FAST) MiniLM-L6v2','(FAIRLY ACCURATE) BGE reranker','(HIGH ACCURATE) ColBERT'], value='(FAIRLY ACCURATE) BGE reranker',label="Embeddings", info="Only First query to Colbert may take litte time)")
prompt_html = gr.HTML()
# Turn off interactivity while generating if you click
txt_msg = txt_btn.click(add_text, [chatbot, txt], [chatbot, txt], queue=False).then(
bot, [chatbot, cross_encoder], [chatbot, prompt_html]).then(update_count_html,[],[count_html])
# Turn it back on
txt_msg.then(lambda: gr.Textbox(interactive=True), None, [txt], queue=False)
# Turn off interactivity while generating if you hit enter
txt_msg = txt.submit(add_text, [chatbot, txt], [chatbot, txt], queue=False).then(
bot, [chatbot, cross_encoder], [chatbot, prompt_html]).then(update_count_html,[],[count_html])
# Turn it back on
txt_msg.then(lambda: gr.Textbox(interactive=True), None, [txt], queue=False)
# Examples
gr.Examples(examples, txt)
demo.queue()
demo.launch(debug=True)
|